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Abstract

A seller makes offers every instant, without commitment, to a privately informed buyer. An

audience observes the negotiation and can choose to intervene in the seller’s favor at a cost. The

audience observes all offers (public bargaining) or only the bargaining delay but not the offers (private

bargaining). If the audience prefers intervening in the seller’s favor when the buyer’s type is lower,

then typically private bargaining benefits the seller, raises prices, and increases delay. If the audience

prefers intervening in the seller’s favor when the type is higher, the effects are reversed.
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1 Introduction

This paper studies the effects of privacy on bargaining. How do agents negotiate differently when they
know their offers are being observed? I study the intervention motive for privacy: as they bargain, agents
worry about strategic audiences who observe (something about) the negotiation and whose actions
change the nature of the negotation and the parties’ relative bargaining power.1

• Private Politics: When a labor union bargains with a firm over a wage contract, both parties under-
stand that there are regulators observing the negotiation who can choose to intervene depending
on how the bargaining evolves—regulators can impose an arbitration agreement, they can force
injunctions that prevent lockouts, or they can require the union to continue working before an
agreement is reached. For example, the early 2000’s strike by ILWU, the longshoremens union in
the US, essentially ended after the intervention of President Bush. At the time, both parties were
clearly aware of the possibility of endogenous interruption, and in fact press reports suggest that
the shippers’s bargaining strategies were tailored explicitly to induce the president’s intervention.
According to a New York Times article on the dispute, “[t]he union said the lockout was a manage-
ment ploy intended to have the president intervene.” The AFL-CIO secretary-treasurer said, “[w]e’re
absolutely furious . . . The P.M.A. [ports management] locked the workers out, contrived a phony
crisis and then gets rescued by the administration. They’re getting their way and have the weight of
the government behind them.”2

• M&A: Many mergers-and-acquisitions deals start as bilateral negotiations between a company and
an acquirer, but they endogenously become auctions when another acquirer chooses to trigger a
bidding war after its interest is piqued. To my knowledge, this process of negotiations endogenously
becoming auctions has not been tabulated explicitly in the corporate finance literature, but there is
some indicative evidence that it is common. Schwert (1996) shows that, in the 1975-1991 period,
30% of tender offers for US-listed companies in his sample eventually drew multiple bidders.
• A variation on the former example is that large corporate negotiations attract media scrutiny, which

can eventually generate publicity that changes the payoffs of the different players. Media attention,
for example, will strengthen the hand of activist investors who need to corral the votes of many
dispersed shareholders in order to impose their views on management.
• International relations: Disputes between countries take place under the scrutiny of domestic

audiences (see, e.g., the rich political science literature going back to Fearon (1994); see also
Schultz (1998)). These audiences respond to the parry of offers and counter-offers and can then
impose political costs on the governments conducting the negotiations.3 At an extreme, some
bargaining posture taken abroad could bring about the collapse of a government, so both countries in
a negotiation will adapt their bargaining to the possibility of intervention by their domestic publics.
Fearon (1994) reports the following remark made by the French minister of foreign affers to the
British ambassador in the buildup to the Seven Years’ War (1757-1763):

1 Of course this is not the only motive for privacy. Parties could also have reputational concerns, i.e., they worry about
audiences that matter outside of the current negotiation.

2 See www.nytimes.com/2002/10/09/us/president-invokes-taft-hartley-act-to-open-29-
ports.html.

3 The political science literature typically takes these audience costs as exogenous and explores their role in allowing countries
to engage in costly signalling of true intentions. The focus here is rather on the audience’s endogenous decision to impose costs
and on how bargaining strategies respond to the possibility of that decision under different information structures.
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[The minister] complaine’d very much of the licentiousness of our Publick papers in
exaggerating things beyond measure which only served to irritate and stir up animosity
amongst the lower sort of People in both Nations without a just cause.

In some of these examples, such as the president in the ILWU strike, the audience adjudicates in
favor of one of the parties at a moment of crisis. In others, such as the media and M&A example, the
audience interrupts the negotiation. What all examples have in common is that the negotiating parties
would incorporate concerns about endogenous intervention into their bargaining behavior.

Abstracting somewhat from institutional detail, I study these issues in a model where a seller and
a privately informed buyer bargain in the shadow of an audience who may stochastically choose to
intervene. Time is continuous, on an infinite horizon, and the buyer and seller both discount time at
the same rate. The seller makes offers to the buyer, who has private information about his value for
the good. The seller can adjust her offers every instant, without commitment.4 The audience receives
a single decision opportunity at a Poisson rate `0; when such an opportunity arises, the audience can
decide between a costly option, d = Y , and a free one, d = N . By convention, I assume that the costly
option is more favorable to the seller. The audience’s net payoffs from this choice depend on the buyer’s
true type, so that as the parties negotiate, they realize that the informational content of their offers affects
the audience’s decision.

By re-interpreting the players and the arrival of decision opportunities, the model can accomodate
both adjudication and interruption scenarios:

Adjudication: The audience is long-lived but can only intervene upon the arrival of a crisis that arrives
at a Poisson rate. At that time, the audience must adjudicate, i.e., rule in favor of either the seller or
the buyer, where ruling for the seller incurs an additional random cost. The game then ends, giving all
parties their intervention payoffs.

Interruption: The audience consists of a stream of short-lived audiences who arrive at a Poisson rate.
Each audience, when it arrives, chooses between interrupting the negotiation at a cost, or leaving. If a
time-t audience leaves, the game continues as before; if instead it iterrupts, the game ends and players
receive their intervention payoffs.

Having the game end after intervention need not be interpreted literally; intervention can also represent
the start of a different continuation game, and the intervention payoffs will be sufficiently flexible to
include the reduced form of many different continuation games. The key restriction is that the audience
cannot optimally choose the timing of intervention—it must take the opportunity when it arises or let it
go forever. While the proofs lean heavily on this feature, the rankings I provide are strict, so I do not
believe this to be a knife-edge case. The assumption of a single, non-deferrable intervention opportunity
would mean, for the regulatory example, that intervention spends down the regulator’s precious political
capital, and as such is only done in times of exception where the regulator’s meddling would not be
seen as controversial. (Alternatively, the regulator could be inattentive, and it is only the crisis that
highlights the need for intervention.) Domestic political audiences, in the international dispute example,
are plausibly more reactive and operate on a shorter horizon than the negotiating governments, so the
assumption may not be unduly restrictive there. In the M&A bidding-war example, the restriction means
that the model is better suited to the case where entering buyers are either opportunistic buyers not

4 Throughout, I refer to the seller as “she,” and to the incumbent buyer as “he” whenever this would not cause confusion.
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usually in that market, or part of a competitive fringe and therefore on a different timeline than the
incumbent buyer.

I study how outcomes differ when bargaining happens in public (the audience sees the entire history
of rejected offers, “public game” for short) versus when it happens in private (the audience sees how long
bargaining has been going on for, but not the specific offers that have been made and rejected, called
the “private game” for short). In the private game, the buyer and the seller can deviate in ways that are
unobservable to the audience, leading to different equilibrium behavior than the public game. Because
of the discounting, higher types of the buyer dislike delay relatively more, and the game satisfies the
usual “skimming property”: higher types accept any offer that lower types would have accepted, and
after any history, the seller’s beliefs are truncations of her prior. I study equilibria that are Markovian in
that truncation cutoff.

The main force in the model is that disagreement affects the discounted probability of costly

intervention. The audience, knowing that high types of the buyer dislike delay relatively more, interprets
every offer that the buyer rejects as further evidence that the buyer’s value is low (since a high enough
type would have accepted). If the audience’s payoffs net payoff from costly intervention are increasing
in the buyer’s type, disagreement discourages (costly) intervention (DDI for short); if on the contrary the
audience’s intervention payoffs are decreasing in the buyer’s type, disagreement encourages (costly)
intervention (DEI for short).

The main result is that the seller’s preferences over publicity depend on whether DDI and DEI holds,
and little else. Under DDI, the seller prefers public to private bargaining. Under DEI, the comparison
is slightly more subtle, but the seller still broadly prefers privacy: either she prefers private bargaining
to public bargaining outright, or she prefers nearly private bargaining, where all offers but the first are
private, to purely public bargaining. Most of the other fine details of the model—whether the audience
adjudicates or interrupts, the precise nature of the post-intervention game or the distribution of buyer’s
type, etc—will not affect that preference.

Under some additional conditions, I show that the buyer and the seller have a conflict of interest at
the ex ante stage. Suppose that the distribution of buyer values is log-concave and the audience’s net
payoffs satisfy a “diminishing marginal response to information” condition: changes in the cutoff affect
the speed of intervention more when the cutoff is high, early in the game, than when the cutoff is low. If
intervention is bilaterally neutral–intervention neither creates nor destroys the joint value enjoyed by the
buyer-seller pair—then under DEI, bargaining in public grows the buyer’s ex ante utility and the sum of
the buyer and the seller’s ex ante utilities. Under DDI, the opposite is true. The seller’s preferences for
privacy in DEI and publicity in DDI thus come at the expense of both the buyer and the pair’s bilateral
surplus.

Notice that, when she bargains in public, the seller acquires a lever that is unavailable to her in the
private game: she can use her offers to modulate the (discounted) probability of a costly intervention.
By making lower offers publicly, she can screen the buyer faster and change the audience’s beliefs faster
(vice-versa for higher offers). This lever would appear, at first blush, to be clearly helpful to the seller.
The main result shows this logic is incorrect, and in fact, having this lever available may often harm the
seller.

The gist of the argument is that the seller’s lack of commitment pushes the seller’s utility down
to what she could obtain by making unreasonable offers forever—a kind of outside option—and the
outside option in the public game is better than the private one under DDI and worse under DEI.
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Consider the DDI case (the argument for DEI is symmetric). Indeed, if the seller deviates and makes
unreasonable offers forever, this freezes the audience’s beliefs in the public game (since the audience
sees the deviation), but has no effect on those beliefs in the private game. Therefore, this “stalling”
deviation leads to a constant rate of costly intervention under public offers, but a dropping rate of costly
intervention under private offers. Since the deviation will eventually give the seller the intervention
payoffs and no more, then the seller prefers a steady intervention rate to a dropping one, since it delivers
those payoffs sooner.

If disagreement encourages costly intervention (recall this is the intervention that favors the seller),
it is as though the seller gave the buyer the following speech while bargaining in private:

Listen, I know I’m supposed to make you a reasonable offer, but you better agree to this
higher price right now. If you don’t, you’re only making things worse for yourself. The
audience does not see what I offered you, so if you reject, they will conclude that you
rejected a reasonable offer. They will be more willing to intervene in my favor in the future,
strengthening my hand even more.

When disagreement discourages costly (and seller-favorable) intervention, the tables are turned, and
it is as though the buyer can make the following speech while bargaining in private:

Listen, I know you’re supposed to make me a reasonable offer, but you better offer me
something better. If you don’t, you’re only making things worse for yourself. The audience
does not see what you offer, so if I reject, they will conclude that I rejected something
reasonable. They will be less willing to intervene in your favor in the future, weakening
your hand even more.

The above intuition for the seller’s preferences uses little of the structure of equilibria. In subsequent
results I decompose the payoff effects into their price and delay components, and I show that the “price”
channel dominates: the seller prefers the regime with higher prices. To boot, under DEI, transaction
prices are uniformly higher in the private game, and under DDI, they are uniformly lower in the
private game. Intuitively, under DEI, the seller makes very low offers in the hope that the arrival of an
audience will strengthen her hand, while under DDI, she makes very high offers in order to “protect”
the strong hand that she has. If the buyer’s values are log-concave and the audience’s payoffs satisfy
the “diminishing marginal response to information” condition above, then delay and price responds in
opposite ways to public bargaining: trade is uniformly faster in public under DEI and uniformly slower

in public under DDI.
The paper is organized as follows. Section 2 discusses related literature. Section 3 introduces the

model and continuous-time equilibrium concept and related formalism. Section 4 formally states the
main results on the seller’s induced preferences over privacy, which are then developed in the rest of the
paper. Section 5 describes the key steps in the proof of the main result. Section 6 decomposes the payoff
comparisons into price and delay changes. Section 7 discusses some implications for the equilibrium
effect of disclosure policies. It also discusses the contrast between this model and a static one-shot
version of the model, highlighting the new insights that come from modeling the lack of commitment.
Finally, the section discusses extensions that are covered in the appendices–especially to the gap case,
which has more complicated dynamics. Omitted proofs are in the appendices.
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2 Related Literature

This work contributes to a recent literature on the effects of price transparency on market performance
(Hörner and Vieille, 2009; Kaya and Liu, 2015; Fuchs et al., 2016). This family of models focuses on
discrete-time search markets, where a long-run informed player faces offers by a sequence of short-
run uninformed players. My paper shares the key concerns of this literature. However, by looking
at bargaining between long-lived agents (rather than a search market) and by introducing strategic
audiences, I uncover a very different mechanism through which price transparency can shape outcomes:
privacy changes the severity of the offering player’s commitment problem. I discuss the contrast between
my results and those in this literature in Remark 1. In particular, the fact that privacy can have starkly
different effects depending on the valuation structure on the buyer’s side is new. 5

In addition, this paper contributes to prior work on the interaction between endogenous entry and
private information in markets. An earlier literature on static mechanism design considered how the need
to induce the endogenous entry of agents could completely change the auction format a seller should use
(McAfee and McMillan, 1987; Levin and Smith, 1994; Ye, 2007). Recent papers in mechanism design
consider the new incentive issues that arise when long-lived agents can choose the time at which they
arrive to or depart from the market (Garrett, 2017; Mierendorff, 2016; Gershkov et al., 2017). The seller
has full commitment power in these papers, so the main force I identify (the interaction between market
transparency and the seller’s lack of commitment) is absent.6

Finally, this paper contributes to a recent literature on bargaining in changing environments (In-
derst, 2008; Fuchs and Skrzypacz, 2010; Ortner, 2017; Daley and Green, 2020). In these works, the
environment evolves exogenously, due to arrivals of news (Daley and Green, 2020), arrivals of other
players (Inderst, 2008; Fuchs and Skrzypacz, 2010), or because the seller’s cost changes over time
(Ortner, 2017). In common with these papers, I look at Stationary/Markovian equilibria of a Coasian
Bargaining setup (Bulow, 1982; Stokey, 1981) in the “frequent offers” limit (Fudenberg et al., 1985;
Gul et al., 1986).7 The “stage game” I use borrows from Fuchs and Skrzypacz (2010), who study the
frequent-offers limit of a discrete-time bargaining game where some event that ends the negotiation can
arrive at a constant, exogenous rate. My approach to formulating the bargaining interaction directly in
continuous time, writing the uninformed agent’s problem in “quantity space,” follows Ortner (2017) and
Daley and Green (2020). Notably, my model has a continuum of types and no driving Brownian motion,
so one contribution is providing the right restriction on strategy spaces that allows for tractable analysis
of necessary conditions. In addition, the private game here is non-stationary.

5 To my knowledge, the earliest model on the impact of privacy in bargaining between long-lived agents is Perry and Samuelson
(1994). In their two-period model, the “audience” is a constituency on behalf of whom one of the agents is bargaining. When the
bargaining happens publicly (“open-door”), the constituency can force an end to the negotiation after observing the failure of the
first round of offers, whereas with private bargaining (“closed-door”), the constituency can only accept or reject final offers. The
motive for privacy is therefore different from, and complementary to, the one highlighted by my model.

6 Few works study private information and endogenous entry in dynamic settings without commitment. A notable exception is
Zryumov (2015), in which there are good and bad entrepreneurs, and bad entrepreneurs can strategically choose when to enter a
competitive market for funding.

7See Ausubel et al. (2002) for a comprehensive review of the preceding Coase Conjecture (Coase, 1972) literature.
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3 Model and Equilibrium Notions

There is a long-lived seller S and a long-lived buyer B bargaining over an indivisible asset owned by S.
B’s willingness to pay for the asset is a privately known type vB ∼ FB [v

¯
, 1], v

¯
≥ 0. They bargain in the

shadow of an audience A that observe (aspects of) the negotiations and can choose to intervene. Time is
continuous, with an infinite horizon, and the buyer and the seller discount the future at rate r. Hence, if
they agree on a price p at time t before the audience intervenes, their payoffs are e−rtp for the seller and
e−rt(vB − p) for the buyer.

The audience may only intervene when an opportunity arises, which happens at a constant Poisson
rate `0. Faced with an opportunity, the audience must then make a decision d ∈ {Y,N}, where by
convention d = Y is the decision that is “more costly” to the audience. A decision d gives player
i ∈ {S,B,A} present-value expected payoffs of πdi (vB) as a function of the buyer’s type. When it
chooses d = Y , the audience also suffers a private cost c ∼ G, which is drawn independently of vB and
the history of the game. πi(vB) := πYi (vB)− πNi (vB) (without a superscript) denotes the net gain to
i from intervention in the seller’s favor. Below, upper case π’s denote the payoffs from intervention
conditional on knowing vB ≤ k: Πd

i (k) := FB(k)−1
∫ k

0
πdi (v)dFB(v) for i ∈ {S,A}, with Πi(k) :=

ΠY
i (k)−ΠN

i (k) (no superscript) once again denoting the net gain from costly intervention.
The model nests two classes of models for the audience decision, adjudication and interruption:

Adjudication: There is a single audience observing the bargaining game. At rate `0, a crisis arrives
that requires the audience to adjudicate in favor of either the seller (d = Y ) or the buyer (d = N ). (The
audience cannot intervene before the moment of adjudication). The game ends after the audience’s
decision.

Interruption: A stream of short-run audiences arrives to the market at rate `0. Each audience, when
it arrives, draws c and chooses whether to interrupt (d = Y ) or not (d = N ). The cost c for d = Y

is drawn independently across audiences. πNi (vB) = 0 for all i, vB . If the time t audience chooses
d = N , it leaves, and the game continues as before. If the audience chooses d = Y (“interrupting”), the
game ends, and the intervention payoffs of πYi (vB), i ∈ {S,B,A} are realized. Figure 1 depicts the
interruption “stage game” being played in each [t, t+ dt).

S makes
offer to B B rejects A arrives, learns c

A pays c to intervene,
game ends

B accepts,
game ends

No A arrives, next
“period”

A leaves,
next “period”

[t, t+ dt)

Figure 1: Heuristic “Stage Game”, Interruption Case

Given a path of prices P = {Pt}t≥0, if the audience intervenes at time σ and makes a decision dσ , a
buyer with type vB who plans to accept an offer at τ would receive ex post payoffs of

e−rτ1τ≥σ(vB − Pτ ) + e−rσ1τ>σ
(
1dσ=Y π

Y
B (vB) + 1dσ=Nπ

N
B (vB)

)
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while the seller receives (given the type vB of the buyer)

e−rτ1τ≥σPτ + e−rσ1τ>σ
(
1dσ=Y π

Y
S (vB) + 1dσ=Nπ

N
S (vB)

)
I impose the following conditions.

Assumption 1 (Smooth Primitives). FB and G have full-support, strictly positive continuous densities
fB ∈ C2[0, 1] and g ∈ C3[0, c̄].8 πdi ,i ∈ {S,B,A}, d ∈ {Y,N} are C2 functions.

Assumption 2.

1. π′B(k), (πNB )′(k) ≤ 1.
2. π′S(k), (πNS )′(k) ≥ 0, with strictly inequality for k < 1.
3. π′A(k) 6= 0, with constant sign.

Item 1 ensures the typical “skimming” property, whereby high types dislike delay relatively more and
accept sooner (Lemma 2 in the appendix). Posterior beliefs about vB that are then right-truncations of
the prior, and the buyer’s acceptance decisions can be summarized with a path of truncations (“cutoffs”)
{Kt}t≥0. Item 2 states that the seller prefers high types of the buyer, and more so when the decision is
costly. In this sense, the costly decision is favorable to the seller. Item 3 says that the audience always
responds to new information about the buyer in a monotone way: when vB is rises, it always either
becomes more willing to choose d = Y , or always becomes less willing.

Buyer and Seller Problems With some notation for the present value of a dollar that pays at time t
if the game has not ended yet, we can write the players’ expected payoffs from any adjudication or
intervention game in a unified way. Let λt be the time-t instantaneous rate at which the game ends with
a costly decision by the audience, i.e., λtdt ≈ P(game ends during [t, t+ dt), d = Y ), and denote with
boldface λ = {λt}t≥0 a path of such rates. Then, as a (possibly trivial) function of λ, the present value
of a dollar that pays at time t if the game has not ended is

δ(t;λ) = e−rtP(game not over by t) =

e−rte−
∫ t
0
λνdν , for interruption games

e−rte−`0t, for ajdudication games.
.

The buyer’s expected payoffs from accepting at τ , given the other player’s actions, are

UvBB (τ,P,λ) = δ(τ ;λ)(vB − Pτ ) +

∫ τ

0

δ(t;λ)[λtπB(vB) + `0π
N
B (vB)]dt (1)

The expected payoffs to the seller from a path of prices P, given rates of costly intervention λ, and
buyer acceptance decisions summarized by a cutoff path Q, as

US(Q,P,λ) =

∫ ∞
0

δ(t;λ)Ptd(1−FB(Qt)) +

∫ ∞
0

δ(t;λ)FB(Qt)
[
λtΠS(Qt) + `0ΠN

S (Qt)
]
dt

Key Preliminaries: Effects of Information Let Λ(k) := `0G(ΠA(k)); by standard Poisson sampling
results, this is the rate at which an arrival of an opportunity results in a costly intervention, if the state is
permanently held at k.

Definition 1 (Discount function). For a path of costly intervention rates λ = {λt}t≥0, let

8 That is, they are C2 and C3 in the interior of their respective domain, their right-hand derivatives exist and are continuous at
left corners, and vice-versa for right corners.
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DX(t|λ) :=
1

δ(t|λ)

∫ ∞
t

λsδ(s|λ)ds (2)

denote the t-present value of a claim that pays $1 dollar at the moment of a costly intervention, given
that the game has not ended by t. Then the discount function at cutoff k is the expected discount given
a constant rate of costly intervention λt′ = Λ(k)∀t′ ≥ t:

D(k) := DX(t|{Λ(k)}t≥0) (3)

(note that the right hand side is always constant in t).

Definition 2 (DEI/DDI). Let D be the discount function in (3). Say “disagreement encourages (costly)
intervention,” abbreviated DEI” if D′ < 0, and “disagreement discourages (costly) intervention” abbre-
viated DDI, if D′ > 0.

DEI (DDI) is solely a property of the audience’s payoffs: D′ < 0 whenever π′A < 0, i.e., learning
that the buyer’s type is lower makes the audience more likely to intervene in the seller’s favor (vice versa
for D′ > 0).

Next, I impose a condition that rules out some trivial dynamics:

Assumption 3.

1. Let

P̂ (k) := D(k)πS(k)−D′(k)
FB(k)

fB(k)
ΠS(k) +

`0
`0 + r

πNS (k) (4)

P (k) := max
{
P̂ (k),max{D(v

¯
), D(1)}πS(k) +

`0
`0 + r

πNS (k)
}

P (k) := k −max{D(v
¯
), D(1)}πB(k)− `0

`0 + r
πNB (k)

Then P (k) ≤ P (k), with strict inequality for k > v
¯
.

2. D(1)ΠS(1) + `0
`0+rΠN

S (1) > v
¯
−D(1)πB(v

¯
)− `0

`0+rπ
N
B (v

¯
).

The expressions in Assumption 3.1 may seem obscure at first blush, but in fact they are only a “gains
from trade” assumption in disguise. To see this, assume for a moment that intervention is exogenous and
always in favor of the seller. Then D(k) = `0

`0+r and the condition simplifies to

`0
`0 + r

πS(k) ≤ k − `0
`0 + r

πB(k) (GAINS)

The left hand side is the lowest price at which the seller is induced to trade when she knows that the
buyer’s type is k; it equals her “reservation payoff” from stalling forever. The buyer’s reservation payoff
in this simplified game is `0

`0+rπB(k), so the right hand side is the highest price at which the buyer can
be induced to trade. Hence (GAINS) says that the lowest price at which the seller is willing to trade is
lower than the highest price at which the buyer is willing to trade, i.e., there are gains from trade.

Assumption 3.2 rules out instant trade. It says that, at the start of the game, the seller would rather
wait for intervention than make a kind of “pooling” offer that all types would accept: if the audience
believes the seller is stalling, then the right hand side of Condition 2 is v

¯
’s reservation price.

Assumptions 2 and 3 are the key economic restrictions. To streamline the analysis, I impose an
additional restriction that greatly simplifies the equilibrium description.
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Definition 3. The game has a gap if P (v
¯
) < P (v

¯
), and no gap if P (v

¯
) = P (v

¯
).

Assumption 4.

1. There exists k† ∈ (0, 1] such that P̂ (k) defined in (4) is strictly increasing for k ≤ k†, and
P̂ (k) ≤ P̂ (k†)∀k.

2. There is no gap.

Assumption 4.1 will imply uniqueness of public equilibria. P̂ will satisfy this, for instance, if it is
single-peaked.9 Appendix B and Online Appendix A.4 show that the bulk of the analysis goes through
when the assumption is removed.

For concreteness, I often refer to the following interruption and adjudication examples:

Example 1 (Interruption: competitors & bidding wars). The audience consists of a competitive fringe
of other buyers, called “entrants” for short. If an entrant intervenes, a bidding war is immediately
triggered between the two buyers. The costly intervention cost c is a due diligence cost: by pay-
ing c ∼ G[0, c̄], the entrant privately learns a signal vA relevant to its value. The entrant’s value
is ξ(vA, vB), with ∂ξ

∂vB
∈ (0, 1) and vA ∼ FA(·|vB), so there may be a common value component

as well as correlated signals. The c’s and vA’s are independent across entrants (conditional on vB)
and independent of the Poisson arrival process. The payoffs πi(vB) are the reduced form payoffs
from the bidding war. For instance, if the bidding war is a full-information ascending auction with
no reserve, and one focuses on the natural ex post equilibrium (Milgrom and Weber, 1982)10 then
πB(vB) =

∫
(vB − ξ(vB , vA))1ω(vA)≤vBdFA(vA|vB), πS(vB) =

∫
min{vB , ω(vA)}dFA(vA|vB),,

and πA(vB) =
∫

(ξ(vA, vB) − vB)1ω(vA)>vBdFA(vA|vB), where ω(vA) solves ξ(vA, ω(vA)) =

ω(vA).
In this environment, DDI/DEI depends on the correlation between the incumbent’s and entrants

signals, not on the degree of commonality in values. Intuitively, the good news about the quality of the
good inherent in a higher k must overwhelm the bad news about the strength of competition in that k.
With independent signals, π′A(vB) < 0 always holds. For a simple example where correlation in the
signals leads to DDI, suppose the buyer has a value vB ∼ F , which he observes perfectly, while any
entrant has a value vA = θvB , where θ is independent of vB and has mean E[θ] > 1. An entrant’s ex
post payoff from a bidding war is (vA − vB)+ = (θ − 1)+vB , so that, using the independence of vB
and θ, πA(vB) = E[(θ − 1)+]vB , which is strictly increasing in vB .11

Example 2 (Adjudication: private politics and bargaining in the shadow of regulators). The “buyer” is
a firm with privately known profitability vB , and the “seller” is a striking union that wants to negotiate

9 The numerical bidding war/interruption examples in Table 1 below all have single peaked P̂ ’s.
10 Even though bidders here have asymmetric beliefs, the equilibrium of the symmetric full-information ascending auction

model in Milgrom and Weber (1982)[p. 196] is an ex post Perfect Bayesian Nash Equilibrium, so it will remain an equilibrium for
any beliefs of the bidders.

11 The same distinctions can be drawn in a model where entrants know their value before making an entry decision. Assume
the incumbent buyer’s private observation is a signal εB that gives an estimate of his own value, εA ∼ Gε denotes a generic
entrant’s signal of his (the entrant’s) value, and c ∼ Gc denote his entry cost. The εA’s and c’s are independent of each other
and across entrants. Let π̃A(εA, k) denote the entrant’s bidding war expected payoff, as a function of εA, when he believes
εB ≤ k. Assuming, as is natural, that π̃A is increasing in the entrant’s signalεA, let ε̄(k, c) be the unique value satisfying
π̃A(ε̄(k, c), k) = c. The probability of entry at state k is then Λ(k) = `0

∫
εA≥ε̄(k,c)

dGc(c)dGε(εA). The analysis can
proceed as before, with the only change being that the DEI/DDI condition, while remaining the same in spirit, will be formulated
more abstractly. The environment is DEI (DDI) if ∂

∂k
ε̄(k, c) > (<)0. Intuitively, if ∂

∂k
ε̄ < 0, then whenever the incumbent has a

better signal (higher k), the entrant is more willing to enter (requires a lower minimal signal to enter), and the environment is DDI.
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the highest possible wage. A crisis (spooked investors, public relations disaster, quality collapse
due to the ongoing strike) that threatens to wipe out the firm arrives at rate `0. The audience is a
regulator who, at the moment of crisis, must decide on a (possibly inefficient) surplus split. Hence,
(πdS(vB), πdB(vB) := (αdvB , β

dvB), d ∈ {Y,N}). where (αd, βd) ∈ (0, 1]× [0, 1] are fixed parameters
satisfying αd + βd ≤ 1 and αY > αN , i.e., the union prefers d = Y . The regulator’s payoffs πdA(vB)

can be arbitrary subject to Assumption 3; the environment is DEI (DDI) if πYA − πNA is decreasing
(increasing) so that the regulator is more likely to intervene in the union’s favor when profitability is low
(high).

3.1 Equilibrium Concept

Informal Summary: I focus on equilibria that are Markovian in the belief cutoff k. In the public game,
the buyer chooses a reservation price strategy P pu(·), such that vB accepts the first time a price lower
than P pu(vB) is offered. Meanwhile, taking P pu(·) as an (endogenous) inverse demand curve, the
seller makes offers in “quantity space”: for any initial state k, she chooses a path of cutoffs t 7→ Kk

t

that results in continuation offers t 7→ P pu(Kk
t ).12 The audience chooses an instantaneous rate L(·) of

taking the costly decision d = Y as a function of the state. The additional twist with private offers is that
the audience does not observe the offers, and so it must form time-dependent beliefs on the buyer’s type.
The game then has a two-dimensional state (cutoff k and calendar time t) that both buyer and seller
condition on, and one has an additional fixed point on beliefs: along the path of play, the audience’s
beliefs about the types of the buyer who have been ruled out must be correct.

The set of all possible non-increasing cutoff paths is unmanageably large as a strategy space for
the seller. To make the analysis tractable, I consider a restriction on this space that still allows for rich
dynamics:

Definition 4 (Seller Strategy Space). An action plan for the seller is a cutoff path t 7→ Kt, with generic
value k. K (in boldface) denotes the entire path {Kt}t≥0. A cutoff path K is admissible if it is (i)
measurable, (ii) non-increasing, (iii) right-continuous, and (iv) has no singular-continuous parts. Let Ak
denote the set of admissible paths with initial value k, i.e, that satisfy K0− = k.

Definition 5 (Public Offers Equilibrium). Take a triple of policies

Σ =
(
{Kk}k∈[0,1], P

pu(·),L(·)
)

together with a value function for the seller JpuS (·).13 Denote by P(Q) = {P pu(Qt)}t≥0 and L(Q) =

{L(Qt)}t≥0 the prices and costly intervention rates that Σ prescribes in response to an admissible cutoff
path Q. Then Σ is a Markov Equilibrium of the public game if:

1. Buyer Optimality For all vB ∈ [0, 1], k ∈ [0, 1], accepting at τ∗ = inf{t : P (Kk
t ) ≤ P (vB)}

solves the buyer continuation problem

12 In the main text, to simplify the presentation, I assume the seller cannot mix. The extensions in appendices, which cover
the gap case and more general primitives, require mixing, which is handled with a different formulation of the seller strategy
space. The no-mixing equilibria in the main text are robust to giving the seller that richer strategy space. Moreover, note that a key
result in the discrete-time literature on the Coasian bargaining is that there is no randomization along the path of Stationary (Weak
Markov) Equilibria, and no randomization on or off path for Stationary Strong Markov Equilibria.

13 I add the (slightly redundant) seller’s induced value function to the set of equilibrium objects for convenience in stating a
restriction later on.
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sup
τ≥0
UvBB (τ ;P(Kk),L(Kk))

2. Seller Optimality For any k ∈ [0, 1], Kk solves problem

sup
Q∈Ak

FB(k)−1US(Q,P(Q),L(Q))

and delivers continuation value JS(k).

3. Audience Optimality For all k, L(k) = Λ(k) = `0G(ΠA(k)).

Private offers equilibria also consist of triples of reservation prices, cutoff paths, and costly inter-
vention rates (together with an induced value function for the seller). Below, Kk,t denotes a cutoff
path s 7→ Kk,t

t+s, s ≥ 0− satisfying the initial condition14 Kk,t
t− = k, and λ∗ = {λ∗t } is a path of costly

intervention rates.

Definition 6 (Private Offers Equilibrium). Take a triple of policies

Σ =
(
{Kk,t}k∈[0,1],t≥0, P

pr(·, ·),λ∗)
and a value function for the seller JprS (·, ·). Denote by Pt(Q) = {P pr(Qs, t + s)}s≥0− and L∗t =

{λ∗t+s}s≥0− the prices and costly intervention rates that Σ prescribes for time t onwards in response to
a cutoff path Q. Then Σ is a Markov Equilibrium of the private game if

1. Buyer Optimality For all k ∈ [0, 1], t ≥ 0−, accepting at τ∗ = inf{s : P pr(Kk,t
t+s, t + s) ≤

P pr(vB , t+ s)} solves vB’s continuation problem

sup
τ≥0
UvBB (τ,Pt(K

k,t),L∗t ). (5)

2. Seller Optimality For any k ∈ [0, 1], t ≥ 0−, Kk,t solves the seller’s continuation problem

sup
Q∈Ak

FB(k)−1US(Q,Pt(Q),L∗t ) (6)

and delivers continuation value Jpr(k, t).

3. Audience Optimality, Correct On-Path Beliefs For each s ≥ 0, λ∗s satisfies

λ∗s = Λ
(
K1,0
s

)
= `0G

(
ΠA

(
K1,0
s

))
, (7)

i.e., the entrants have correct on path conjectures about cutoff paths.

The seller is not mixing, so the costly intervention rate at t must match what it would have been had
the audience known the on-path cutoff. In addition, in Condition 2, the seller now takes the intervention
decisions as fixed, since the audience cannot observe the offers.

I focus on a subset of Markov equilibria in which the seller alternates between periods of sufficiently
gradual trade and a few periods with atoms of trade.

Definition 7. (Smooth Trade) For a seller plan K = {Kt}t≥0, time intervals [t
¯
, t̄) where t 7→ Kt is

absolutely continuous are smooth trade regions. Letting K̇t denote the (a.e.) derivative in such regions,
−K̇t is the trading speed. A special case of a smooth trade region is a quiet period, i.e., an interval [t

¯
, t̄)

with Kt̄− = Kt
¯
.

14 I allow s = 0−, since Kk,t may jump t, i.e. Kk,t
t < Kk,t

t−
.
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Definition 8. A Markov Equilibrium of either the public or the private game is regular if (i) jumps are
isolated; (ii) cutoff paths K are differentiable on the interior of smooth trade regions; (iii), JpuS (·) (or
respectively, JprS (·, ·)) are C1; P pu are P pr are continuous at any (k, t) with smooth trade, and (v), for
any on-path state (k, t) of the private game, the seller’s continuation strategy has absorbing smooth

trade: if trade is smooth at (k, t), it is smooth at (k, t′), t′ ≥ t. 15

Below I abbreviate Regular Markov Equilibria as “RME’s” or, when it does not cause confusion, simply
“equilibria”

Discussion of Equilibrium Notion: Holding fixed the audience’s actions, the buyer and seller are play-
ing a continuous-time game with observable actions, which makes typical Nash notions of equilibrium
problematic (Simon and Stinchcombe, 1989). Similar to Ortner (2017) and Daley and Green (2020),
I define an equilibrium notion that is tailored to my setting but still captures key features from fully
game-theoretic, discrete-time analyses of Coasian bargaining (along the lines of Strong Markov Sta-
tionary Equilibria, e.g, Fudenberg et al. (1985); Gul et al. (1986); Ausubel et al. (2002)). Unlike Ortner
(2017) and Daley and Green (2020), my model has continuous types and no driving Brownian motion,
so certain smoothness properties of value functions that arise naturally in those models—and are key
to the analysis—cannot be directly derived here without some additional restrictions on admissible
strategies. One of the contributions is therefore to provide a set of natural restrictions that allow for a
streamlined analysis via HJB’s in models with continuous types (Definition 4 for sufficiency/verification,
and Definition 8 for necessity).

The first three conditions on cutoff paths in Definition 4 are standard. Condition (iv) has more
bite. Since K is monotone decreasing, it has a Lebesgue decomposition. This already implies that
K = A+M+N, where A is absolutely continuous, M is a piecewise constant jump function, and N is
a singular continuous function. Therefore, the additional content in Condition (iv) is that the continuous
part of K is sufficiently smooth: unless there is an atom of trade, the buyer can actually see the price
dropping gently over time, rather than K only moving in “flashes.”16

4 Effects of Privacy: Main Results

I can now formally state the main result of the paper, i.e., the seller’s strong preference for private
bargaining.

Theorem 1. Let (k, t) denote any state reached on path in a private offers equilibrium Σpr, and let Σpu

denote any public offers equilibrium. Let Jpr(k, t) and Jpu(k) denote the seller’s continuation payoffs

at state (k, t) in the two equilibria, respectively.

1. If DEI holds, and Σpu prescribes smooth trade at k, then

Jpr(k, t) > Jpu(k)

2. If DDI holds,

15 The role of the restriction is to derive necessary properties of equilibria from (classical) analysis of the HJB’s. Existence in
this class is shown by construction. Note that equilibria must still be robust to seller deviations in the full class of admissible
strategies.

16Singular dynamics typically arise when trying to keep a Brownian state above some reflecting boundary (e.g., Daley and
Green (2012)).
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Jpr(k, t) < Jpu(k).

Ignoring for a moment the smooth trade hypothesis in the first item, the theorem essentially says
that the seller prefers publicity if disagreement discourages costly intervention, and prefers privacy if
disagreement encourages costly intervention.

Theorem 1 leaves open the possibility that the seller might prefer public bargaining in a DEI
environment if the equilibrium starts with a jump.17 I explore this issue numerically below. Nevertheless,
there is still a sense in which the seller has robust preferences for privacy in a DEI world: public
bargaining is dominated for the seller by a regime that is nearly private. Consider a hybrid “starting-
public” game, where the first offer is made public and all subsequent offers are private. Defining RME’s
for this hybrid game is notationally cumbersome, so I relegate the formal definition to Online Appendix
A.1, but the main idea is straightforward. Since the audience observes the initial offer, the seller controls
the initial level of costly intervention. After that first moment, players face a private game with initial
cutoff equal to the seller’s initial public choice. In DEI environments, this nearly private regime is
uniformly better for the seller than public bargaining:

Theorem 2. If disagreement encourages costly intervention, the seller strictly prefers every RME of the

hybrid starting-public game to any RME of the public game.

If there were some benefit to the initial jump of a public offers RME, the seller could always mimic
that jump in the hybrid game with her initial offer. Since bargaining is private after the first instant of the
hybrid game, the seller can avoid the harmful effects of trading smoothly in public that follow the initial
jump of the public game.

The statements (and indeed the proofs) of Theorems 1 and 2 use very little of the structure of
equilibria, so the channel through which privacy affects the seller’s payoffs is not yet clear: when the
seller prefers public offers, is this because prices are higher? Because delay is reduced? Both?

A full analysis of the buyer’s interim preferences is intractable, but under a natural additional
condition, I decompose the payoff effects of privacy into its constituent price and delay channels; that
decomposition also pins down the buyer’s ex ante preferences over privacy and highlights a fundamental
disagreement between the two parties.

Definition 9. Say ‘disagreement has diminishing effects (on intervention)’ if |D′(·)| is weakly decreas-
ing.

SinceD′(·) has a constant sign, the diminishing effects condition is equivalent toD(·) being concave
under DEI but convex under DDI; intuitively, the audience responds more strongly to what the negotiation
reveals early in the game, when the state is high and there is much to learn, than late in the game when
most of the uncertainty is resolved.

Theorem 3 (Price and Delay Rankings). Let ppu(k) and ppr(k) be the public and private prices,

respectively, that vB = k pays when he buys the good before intervention. Let Kpu and Kpr denote the

equilibrium cutoff paths. Then

ppu(k)

< ppr(k)∀k > 0, if DEI holds

> ppr(k)∀k > 0, if DDI holds

17 Below I provide conditions that guarantee existence of public offers equilibria starting with smooth trade.
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If, in addition, FB is log-concave and disagreement has diminishing effects, then

Kpu
t

< Kpr
t for all t > 0, if DEI holds

> Kpr
t for all t > 0, if DDI holds.

(8)

Said differently, the price channel dominates—the seller prefers the informational regime with higher
prices, regardless of the resultant delay. Insofar as the seller’s ability to maintain high prices reflects her
commitment power, the theorem shows that privacy enhances that commitment power under DEI but
undermines it under DDI.

Log-concavity and diminishing effects assumptions ensure that the private equilibrium price is more
(less) sensitive to the seller’s beliefs when DEI (DDI) holds; this in turn is a sufficient condition under
which speeds of trade can be ranked, since the more sensitive price is to the seller’s belief, the more
tempted type k is to pretend to be k − dk, and therefore the more delay there must be in equilibrium
in order to induce truthful reporting by k. I provide additional details in Section 6. In the interim,
for a quick example where disagreement has diminishing effects, suppose the distribution of audience
costs G is uniform. Then, in adjudication games, disagreement has diminishing effects whenever the
audience net payoffs πA are concave under DEI and convex under DDI. The same is true for interruption
games when πA is sufficiently concave/convex as the case requires. In Example 1 (an interruption game
with entry of a symmetric IPV bidder), one has DEI with diminishing effects of disagreement for the
canonical case of FE = FB = G = U [0, 1].

For the following result, the bilateral surplus refers to the sum of the buyer’s and seller’s utilities,
i.e., the total surplus excluding the audience’s utility.

Corollary 1 (Buyer Preferences, Bilateral Surplus).

1. If DEI holds, there exists k′ < 1 such that vB ≥ k′ strictly prefer public bargaining; if DDI holds,

there exists k′ < 1 such that vB ≥ k′ strictly prefer private bargaining.

2. Suppose that FB is log-concave, disagreement has diminishing effects, and

πdB(k) + πdS(k) = k ∀k,∀d. (9)

i.e., intervention neither adds to nor subtracts from the bilateral surplus enjoyed by the buyer and

the seller. Then there is an ex ante conflict of interest over the privacy of negotiation:

(a) If DEI holds, private bargaining strictly shrinks the ex ante bilateral surplus, and the buyer

strictly prefers public bargaining ex ante.

(b) If DDI holds, private bargaining strictly grows the ex ante bilateral surplus, and the buyer

strictly prefers private bargaining ex ante.

(c) Comparisons (a) and (b) also hold type by type: for any k, the expected discounted bilateral

surplus for the buyer and seller conditional on vB = k, in expectation over the audience’s

decisions, is lower (higher) under private bargaining when DEI (DDI) holds.

Condition (9) says that the bilateral surplus shared by the negotiating parties is the same with and
without intervention. Intuitively, audience intervention on its own does not give the buyer and the seller
any reason to accelerate or delay the agreement, since the pie they split between them is the same
size regardless. The condition holds, for instance, in Examples 2 (adjudication with surplus split) if
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αd + βd = 1, d ∈ {Y,N} and in Example 1 (interruption with bidding war) if the bidding war is an
ascending auction with no reserve. 18

Proof of Corollary 1. The preference ranking for high types follows by continuity: the highest type
always trades before intervention in either the public or private games, and pays a lower price price in
the public game under DEI and in the private game under DDI. Buyer payoffs are continuous in type (by
standard mechanism design arguments), so this preference extends to sufficiently high types.

Items 2(a) and 2(b) follow from 2(c). To prove the latter, fix a buyer type vB = k, let τk denote
the time at which k trades in the absence of intervention and σ denote the (random) time at which
an audience intervention occurs. Under Condition 9, the eventual surplus enjoyed by the buyer and
seller is the same regardless of the audience’s choices, so their expected bilateral surplus, conditional
on k, is S(k) := kE[e−rτk∧σ|k]. Take the DDI case. By Theorem 3, τk is strictly greater for all
k > 0 in the public game. The audience cannot condition on vB; the audience costs c and the arrival
of intervention opportunities are independent of vB . Hence σ is independent of the true type k. In
adjudication games, σ is also independent of the information regime (it occurs at a constant rate `0). In
interruption games, under DDI, σ is stochastically greater (smaller) under public (private) offers, since
λ∗s = Λ(Kpr

s ) < Λ(Kpu
s )∀s > 0. Altogether, under DDI, S(k) is strictly smaller for all k > 0 under

public offers. The reverse ranking holds under DEI.

5 Main Argument

Next, I give the crux of the argument behind Theorem 1. There are two parts to the argument. First, I
formalize the heuristic “speeches” given by the different players in the introduction: the seller’s ‘outside
option’—what she gets from stalling indefinitely—is higher in the private game under DEI but lower in
the private game under DDI. Second, I show that, when the seller screens smoothly, her payoffs exactly
match this outside option.

Seller Outside Options (Ex Ante Value of Stalling) Suppose that, having reached state k at time t,
the seller deviates and “stalls,” i.e., makes unacceptable offers forever after.’ The expected discount to
costly intervention that would result from this is D(k) in the public game and DX(t|λ∗) in the private
game, and the payoffs from this deviation are

Rpu(k) := D(k)ΠS(k) +
`0

`0 + r
ΠN
S (k), if public

Rpr(k, t|λ∗) := DX(t|λ∗)ΠS(k) +
`0

`0 + r
ΠN
S (k) if private

(10)

In the public game, the audience can see the seller stalling, so its belief cutoff remains fixed at k.
Meanwhile, in the private game, the audience would never observe the seller’s deviation, which is why
the discount to costly intervention is computed using the equilibrium rate. The seller’s equilibrium
payoffs in the public and private game are at least Rpu and Rpr, respectively, since the seller could

18 There is an inherent difficulty in generalizing Theorem 1 to either (i) a uniform statement about buyers’ interim preferences
over regimes, or (ii) a statement about efficiency. Even for a buyer being given a static choice between facing an auction or facing
an seller-optimal posted price, whether the buyer prefers the second scenario depends on fine details of the distribution of his and
his opponent’s types. By the same token, it is not clear in my model whether a given buyer prefers to shift discounted probability
mass towards or away from the intervention scenario.
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always guarantee that value for herself by refusing to trade indefinitely.19

Now the key fact: if (k, t) is on the path of the private game, the ranking of the outside options
Rpr(k, t) and Rpu(k) is completely determined by whether DEI or DDI holds. First, with private offers,
the audience has correct beliefs on path, so at time t it correctly infers that the current cutoff is k and
intervenes at a rate λ∗t = Λ(k). Second, starting from an initial level of Λ(k), the costly intervention
rate{λ∗t+s}s≥0 rises over time if DEI holds and falls if DDI holds: the audience’s beliefs about the
buyer’s type drop, which leads to more costly intervention in the former case and less in the latter— this
is the formal counterpart to the heuristic speeches in the introduction. For all (k, t) on the path of the
private game,

DDI holds⇒ D(k) ≥ DX(t|λ∗)⇒ Rpu(k) ≥ Rpr(k, t|λ∗),

DEI holds⇒ D(k) ≤ DX(t|λ∗)⇒ Rpu(k) ≤ Rpr(k, t|λ∗).
, (11)

i.e., the seller’s outside option is therefore higher or lower in the public game depending on whether
DDI or DEI holds. The second key step links those outside options to the equilibrium payoffs:

Lemma 1 (Seller’s Payoffs = Ex Ante Value of Stalling). For any RME’s of the private and public

games,

1. At any k such that the seller trades smoothly in the public game,

JpuS (k) = Rpu(k)

2. At any on-path (k, t) of the private offers RME at which smooth trade is prescribed,

JprS (k, t) = Rpr(k, t|λ∗)

I prove the lemma for the interruption case, where the notation is simpler. Under public offers,
having reached a state k with smooth trade, the seller’s value function satisfies the HJB

rJpuS (k) = sup
|k̇|∈[0,∞)

{
(P pu(k)− JpuS (k))

fB(k)

FB(k)
|k̇|+ Λ(k)[ΠS(k)− JpuS (k)]

+ (JpuS )′(k)(−|k̇|)
} (12)

where |k̇| denotes the seller’s choice of trading speed. The first term corresponds to “flow” profits
from the marginal types who accept the seller’s offer. The seller collects P pu(k) from the “number” of
marginal types fB(k)/FB(k), multiplied by the speed |k̇| at which she is moving through the margin;
upon acceptance, the game ends, so the seller also loses the continuation value JpuS (k). The second term
is the flow payoff from the event of costly intervention after a rejection (in which case the game ends,
and the seller also “loses” JpuS (k)). The third term is the continuation payoff from moving to a new
state.

The seller can choose the current trading speed |k̇| ∈ R+ freely, and this variable enters the right
hand side of (12) linearly. Therefore, for (12) to hold, either (i), the coefficients on |k̇| equal exactly 0,
and the seller is indifferent over all speeds, or (ii), the coefficients add up to something strictly negative,
and |k̇| = 0 is uniquely optimal. In either case, |k̇| drops out from (12), which yields

19 In the private game, the value the seller can guarantee for herself at (k, t) by stalling depends on the audience’s conjecture
has about future play).
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JpuS (k) =
Λ(k)

Λ(k) + r
ΠS(k) = D(k)ΠS(k) = Rpu(k) (13)

When offers are private, the audience’s behavior depends on calendar time, which makes the seller’s
problem non-stationary. One then requires some restrictions on jumping behavior to pin down her
continuation payoffs—but the basic idea, relying on the linearity of the HJB in the trading speed, still
applies. Let λ∗ = (λ∗s)s≥0− denote the equilibrium costly intervention rate with private offers. Then, at
a state (k, t) with smooth trade, the seller’s value function must satisfy the HJB

rJprS (k, t) = sup
|k̇|∈[0,∞)

{
(P pr(k, t)− JprS (k, t))

fB(k)

FB(k)
|k̇| +

rejection & costly intervention︷ ︸︸ ︷
λ∗t [ΠS(k)− JprS (k, t)]

+
∂

∂k
JprS (k, t)(−|k̇|) +

∂

∂t
JprS (k, t)︸ ︷︷ ︸

game continues with new cutoff/time state

}
, (14)

so if |k̇| <∞ solves (40),

rJprS (k, t) = λ∗t [ΠS(k)− JprS (k, t)] +
∂

∂t
JprS (k, t), (15)

which, in a regular equilibrium can be solved to yield20

JprS (k, t) =

[∫ ∞
t

λ∗se
−

∫ s
t

(λ∗ν+r)dνds

]
ΠS(k) = Rpr(k, t|λ∗), (16)

thereby proving the lemma.
The above discussion establishes a weak version of Theorem 1 for the case where both the public

and private game have smooth trade. The final step behind Theorem 1 is to characterize the equilibria of
the two games. The next result summarizes the parts that are germane to Theorem 1 ( see Theorem 5 in
the Appendix for details)

Theorem 4. Equilibria for the public and private games exist and have unique on-path outcomes.21

1. In the unique private equilibrium outcome, the equilibrium cutoff path Kpr is strictly decreasing

(there are no quiet periods) and continuous (trade is always smooth). In particular, the inequalities

in (11) are strict.

2. Let k† be as defined in Assumption 4. In the unique public equilibrium outcome, if k† = 1, there

is smooth trade at all states. If k† < 1, then for k > k†, the cutoff immediately jumps down to k†

(there is an atom of trade); for k ≤ k†, trade is smooth.

20 In a regular equilibrium, the ODE holds for (k, s), s > t. Multiplying the time s > t equation by e−
∫ s
t (λ∗ν+r)dνds on

both sides, and integrating with respect to s, backwards from T > t,

Jpr(k, t) =

∫ T

t
λ∗se
−

∫ s
t (λ∗ν+r)dνdsΠS(k) + e−

∫ T
t (λ∗ν+r)dνJpr(k, T ).

Jpr is bounded, so taking T →∞ yields (16).
21 The crux of the existence proof is (i) for either case, establishing a mixed rate-and-impulse-control verification theorem for

the seller’s problem; and (ii) for the private case, establishing the existence of a fixed point of seller cutoff paths and entrant beliefs.
This is not a trivial requirement, since the fixed point is characterized by a non-linear functional equation: the trading speed
depends on the expected discount to costly intervention, which itself depends on the entire future history of costly intervention
rates.
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6 Ranking Prices and Delay

The price ranking result follows almost directly from the argument in Section 5. Suppose that type
k trades smoothly in both the public and private offers equilibria (the full proof takes care of the case
where k trades in a jump under public offers). The expressions for Jpu and Jpr pinpoint the unique price
that makes the seller willing to trade smoothly at a positive speed, i.e., that which makes the coefficient
on |k̇| in the seller HJB equal to 0:

P̂ pu(k) := D(k)πS(k) +
`0

`0 + r
πNS (k) +

=ρ(k)︷ ︸︸ ︷
D′(k)ΠS(k)

FB(k)

fB(k)

P̂ pr(k, t) := DX(t|λ∗)πS(k) +
`0

`0 + r
πNS (k)

(17)

where I have used ∂
∂k (FB(k)ΠS(k)) = fB(k)πS(k) to simplify. At the time tk at which k trades in the

private game, the difference in the prices paid by k is

P pu(k)− P pr(k, tk) =
[
D(k)πS(k)−DX(tk|λ∗)πS(k)

]
+D′(k)ΠS(k)

FB(k)

fB(k)
(18)

If DDI holds, D′(k) > 0 and D(k) > DX(tk|λ∗), and both terms in (18) are positive; if DEI holds, the
opposite is true.

The term ρ(k) := D′(k)ΠS(k)FB(k)
fB(k) in the public price is a measure of how much the seller ex

post “regrets” (or “rejoices from”, depending on DDI/DEI) trading at state k, given what she learns
when her offer gets accepted. At a state k with smooth trade, only the marginal type vB = k accepts
the equilibrium price offer. Hence, if the offer is accepted, the seller concludes ex post that vB = k,
and that she would have received D(k)πS(k) + `0

`0+rπ
N
S (k) in expectation if only she had waited for

intervention. When the price is lower than that ex post payoff, trading is “bad news” for the seller.

The role of log-concavity and diminishing effects of disagreement I discuss the role played by the
log-concavity and diminishing-effects assumptions in ranking delay across the two games. To fix ideas,
focus on the interruption DEI case, where ρ(k) < 0, i.e., the seller suffers ex post regret in the public
game.

In continuous time, the speed of trade at a state k depends on the balance of two forces: the size
of the gains from trade (trade is faster when the (endogenous) gains from trade are higher at a state),
and the price impact from marginally changing the state (if the price impact is higher, trade is slower).
Intuitively, large gains from trade means players are more motivated to avoid discounting and trade
happens more quickly; a large price impact gives buyer k strong incentives to pretend to be k − dk, so
trade must be slower in equilibrium to induce k to truthfully report its type.

The ‘gains from trade’—and indeed most terms in the marginal price impacts ∂
∂k P̂

pu(k)(−dk) and
∂
∂k P̂

pr(k, t)(−dk)—can be ranked in the desired direction directly from the price expressions above
without the additional assumptions, e.g., gains from trade are larger in the public game.22 Log-concavity
of FB and the diminishing effects condition come in as sufficient conditions to control the derivate of
regret ρ′(·) that, from (17), will show up in the comparison of marginal price impacts. If disagreement

22 Since P pu and P pr are the highest price at which the seller is willing to trade in the two games. The buyer’s reservation
price has an additional term ∂

∂t
DX(t|λ∗)πS(k) in the private game reflecting the time trend in prices for a given cutoff, but the

term does not override the effect of the price ranking.

18



has diminishing effects, intervention against inframarginal types is less responsive over time. Since,
intuitively, the seller is only willing to suffer regret trading with the marginal type in order to induce faster
intervention against inframarginal types, we should expect that the diminshing effects condition should
help the regret term to shrink in magnitude as k falls, i.e., ρ′(k) < 0 so that ρ(k) < ρ(k − dk) < 0.
The log-concavity of FB preempts a possible caveat to this reasoning—that the regret incentive also
depends on the relative sizes of marginal types ≈ fB(k)dk and inframarginal types FB(k). If the
inframarginal types grow relatively faster than the marginal ones as the state drops (i.e., log-concavity
is violated), then the regret incentive could increase over time even as the audience response weakens.
Hence, log concavity and the diminshing effects condition together guarantee that ρ′(k) < 0, from
which ∂

∂k P̂
pu(k) < ∂

∂k P̂
pr(k, t) follows.

Remark 1 (Connection to Price Transparency Literature). Theorem 3 contrasts with previous studies
on the effects of transparency on the division of surplus (Fuchs et al., 2016; Kaya and Liu, 2015). These
papers have typically found that making offers private (i) can be a Pareto improvement and will generally
benefit the informed party, and (ii) makes prices more costly to the informed party. In Kaya and Liu
(2015) and Fuchs et al. (2016), making offers private lowers prices by removing the buyer’s incentives
to reject prices in order to signal his value to future sellers. In my model, making offers private removes
the seller’s incentives to manipulate costly intervention rates through her offers, but this removal may
raise prices or it may lower them, depending on the audience’s preferences.

Remark 2 (Ex Post Regret and Belief Manipulation). In a model of bargaining in a lemons market,
Daley and Green (2020) found that the uninformed party also made “ex post regrettable” offers. The
forces, however, are very different. In their model, the uninformed buyer offers prices that lose money
conditional on the “bad” seller –and are only taken by the bad seller— as a way to experiment and
learn: when the offer is rejected, the buyer becomes more certain that the type is high, which is useful
information going forward. The seller in my model has no experimentation motive. She exposes herself
to ex post regret/rejoicing because she wants to manipulate the audience’s beliefs about market conditions
which she herself does not know. The seller’s behavior thus bears a resemblance to the signal-jamming
models of Riordan (1985) and Fudenberg and Tirole (1986). In those models, an incumbent firm that
is uncertain about the intercept of a demand curve, say, privately sets a low price in the hopes that a
competitor will become pessimistic about that intercept.

7 Discussion, Extensions

Summary The effect of privacy on bargaining depends on whether, on net, strategic audiences prefer
intervening against high or low types of the informed party. If disagreement encourages costly interven-
tion, publicizing offers will tend to hurt the uninformed player making offers, moving prices against her,
so that there is a trade-off between the ability to manipulate beliefs that comes with public offers, and
the way this ability exacerbates the seller’s commitment problem. If it discourages costly intervention,
publicizing offers will tend to help the uninformed player making offers, moving prices in her favor.
Publicity forces a new strategic calculus on the seller: her offers to the marginal type, by speeding
up or slowing down the eventual interruption of negotiations, can affect the profits she receives from
inframarginal types.
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λ, α 0.3 0.7 1 3 5
0.3r 0.154125 0.211781 0.26673 0.420751 0.401806
0.7r -0.151129 0.0723935 0.1383 0.26725 0.295848

r -0.279311 -0.0262746 0.0479 0.191389 0.218542
3r -0.986127 -0.55731 -0.4452 -0.266756 -0.236942
5r -1.55012 -0.940307 -0.8066 -0.625042 -0.607774

Table 1: Proportional gain from private offers Jpr(k=1,t=0)−Jpu(k=1)
Jpr(k=1,t=0) , initial public jumps, DEI. r = 1.

Interruption model, audience is entrant, ascending auction. FB(v) = FE(v) = vα.

Benefits of an initial jump under public offers Theorems 1 and 2 highlight one rationale for bargain-
ing publicly: if continued disagreement would weaken the seller’s hand by delaying costly intervention,
then the fear of that weakening hand gives the seller a kind of commitment power. But in the gap
between Theorems 1 and 2, there lies a very different rationale, which I now explore numerically. When
DEI holds and P̂ pu is decreasing at k = 1, the public game starts with a jump, and Theorem 1 does
not rank public and private bargaining for the seller. Even though the seller’s continuation value after
the jump will be lower than what it would have been at the equivalent state of the private game, the
seller may still be better off net of the jump, for two reasons. First, by trading instantly with some high
valuation types, the seller economizes on any discounting costs that she would have incurred had she
traded with them gradually. Second, by jumping the state, the seller can “jumpstart” costly intervention,
discontinuously accelerating, at the very beginning of the game, the rate at which the audience will
intervene in the future.

Table 1 investigates whether these two salutary effects of public offer jumps can overwhelm the
inherent advantages of private bargaining in DEI environments. I compute the proportional loss from
private bargaining, J

pr(k=1,t=0)−Jpu(k=1)
Jpr(k=1,t=0) for the case where costly intervention consists of entry by a

competing buyer, followed by an ascending auction. I assume for the simulation that the entrant value
vE is also drawn from the incumbent’s distribution FB , and FB(v) = vα. The entrants’ cost is drawn
c ∼ U [0, 1]. Different columns of Table 1 correspond to different values of α ∈ {0.3, 0.7, 1, 3, 5}, while
different columns correspond to different values of `0, where `0 ∈ {0.3r, 0.7r, r, 3r, 5r}. r is held fixed
at 1. For each of these examples, P̂ pu is single-peaked, with an interior maximum k†; the public game
thus starts with a jump, followed by smooth trade, and gives the seller a payoff

Jpu(k = 1) = (1− FB(k†))P̂ pu(k†) + FB(k†)Rpu(k†)

while the private game yields Jpr(k = 1, t = 0) = Rpr(1, 0|λ∗).
The key feature of Table 1 is its diagonal orientation: values above the diagonal are almost all

positive, and they grow as one moves up and to the right, while values below the diagonal are negative,
and they become more negative as one moves down and to the left. In short, the initial jump in a public
offers equilibrium can be beneficial when α is low, and it is more beneficial the higher `0 is.

The positive impact of low α’s in the public game is intuitive. Notice that low α’s (the left columns)
correspond to very concave (and therefore weaker) CDF’s for the distribution of buyer values; the high
types that get jumped over in the initial burst of public-offers trade are therefore very rare. Screening
them smoothly, as would be the case with private bargaining, becomes wasteful for the seller, since she
endures delay in ruling out types that are ex ante very unlikely to exist. The magnitude of the effect,
however, is modulated by `0, and only becomes quantitatively significant when `0 is high.
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Comparison to the Static Case To highlight the effect of the lack of commitment, I briefly compare
the results to the static/one-shot case. Consider a version of the interruption game where (i) the seller
makes a single offer, (ii) if that offer is rejected, the audience can intervene with some probability, and
then (iii) if no audience intervenes, both buyer and seller get zero. In a pure-strategy equilibrium of
the private game, entrants will have correct beliefs about the offer and enter as though they knew the
true offer. The seller could always induce this private offers outcome under public offers, or she could
reoptimize further and choose a different offer. Therefore she would always prefers bargaining in public,
strictly so if the public offers outcome differs from the private one.

In light of this heuristic argument, the seller’s extreme lack of commitment changes the effect of
privacy dramatically: it makes the preferences for publicity vs privacy contingent on the information

structure (nothing about the “mimicking” argument that made the seller prefer public offers in the static
case depended on the valuation structure of buyer and entrants), and it creates induced preferences for
privacy that are impossible in static settings, such as a strict preference for privacy.

Extensions The appendices extend the model in a few different directions. Online Appendices B and
A.4 relax Assumption 3.1 (on the shape of P̂ pu) and 3.2 (on the no-gap condition) respectively. Relaxing
Assumption 3.1 complicates the dynamics in the public game, but the payoff comparisons are mostly
unchanged.

With a gap, late enough in the game the seller may prefer making a pooling offer and trading with all
remaining types to her stalling payoff. If the seller were to make this pooling offer deterministically, the
price would have to drop discontinuously; predicting this drop, the types who are supposed to trade right
before the atom would have no incentive to do so. To maintain incentive compatibility for the buyer, the
seller must therefore impose real delay—a quiet period or impasse during which the seller only makes
non-serious offers. Achieving this behavior in a Markov way requires an expanded strategy set for the
seller that allows her to make a pooling offer at a random stopping time, but the main results and all
of the economics by and large go through identically: the central argument only relies on necessary
conditions at times of smooth trade, and these necessary conditions are unaffected by the expanded
strategy sets.

Equilibrium construction is substantially more involved, and in the private game, the verification
approach from the no-gap case breaks down. The dynamics change, so that equilibria typically involve
smooth trade, an impasse, and a burst of trade at the end. The resulting value functions have kinks
and the flow payoffs–since price jumps down at some point–are discontinuous. I provide a complete
treatment for the public game. For the private game, a full verification for the seller runs into technical
issues near the frontier of the control literature, i.e. regarding the uniqueness of viscosity solutions
for discontinuous HJB’s. The economics, however, are clear enough. The “right” construction, in
terms of incentives that would support private on-path play similar to the public gap case, is as follows.
The possibility of making a profitable pooling offer creates a region in (t, k) space inside which it is
overwhelmingly tempting to make a pooling offer. The boundary of this region usually cannot be crossed

on path, since prices would drop discontinuously and deterministically. Hence, in equilibrium the cutoff
path must “reflect” off the boundary, which is achieved by the seller mixing between a “normal” offer
and a discontinuously generous pooling offer, in such a way that the marginal type remains indifferent
between accepting and rejecting and the cutoff path skirts the pooling region. Eventually, normal trade
“stops,” with the seller mixing between holding firm and making the pooling offer.
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Appendix A.2 provides a construction for the DEI case that is (i) buyer and audience optimal; (ii)
satisfies the consistent-beliefs fixed point condition; (iii) induces a value function for the seller that
solves the HJB in a viscosity sense; and (iv) and is seller optimal starting at states from which the
non-differentiable locus of the value is inaccessible. 23 Uniqueness of viscosity solution to the HJB in
the seller’s private game problem remains an open question.

Implications for Disclosure The results imply the equilibrium effects of “transparency” policies can
vary dramatically depending on the market micro-structure. The SEC, for example, requires publicly
traded companies to disclose information that is material to shareholders. Since serious offers by buyers
are material, publicly traded companies are constrained in how privately they can negotiate acquisitions.
This paper ignores the moral hazard dimension in mergers and acquisitions that typically motivates
these rules, but it uncovers an unexpected trade-off. If the universe of acquirers consists mostly of
competitors or upstream firms, whose values stem from their own synergies with the target’s assets
(‘strategic’ acquirers), then one should expect disagreement in bargaining to encourage entry. My results
indicate a margin on which the shareholders of such a target are harmed by forcing management to
bargain with an acquirer in full public view. Even then, a regulator may pursue this disclosure policy
because of its countervailing benefit of lowering bargaining delays. If, on the contrary, the universe
of acquirers consists mostly of private equity funds (‘financial’ acquirers), whose values stem from an
eventual resale of the company after subjecting it to similar kinds of financial engineering, then one
should expect disagreement in bargaining to discourage entry. Disclosure may then benefit the target’s
shareholders, at the social cost of increasing bargaining delays.
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A Equilibrium Characterization

This section provides a complete characterization of public and private equilibria, as summarized in the
following:

Theorem 5 (Equilibrium). Under Assumptions 1-4, the private and public games have unique RME’s

outcomes. The following is an equilibrium triple (Kpr, P pr(·, ·),λ∗) of the private game,

1. P pr(·, ·) = P̂ pr(·, ·|λ∗), where P̂ pr is given by (17).
2. Trade happens smoothly (no jumps) at all states (k, t), at a strictly positive speed (no quiet

periods). Starting from a state (k0, t0), Kpr,k0,t0
t evolves according to Kpr,k0,t0

t = k0 −∫ t
t0
ϕpr(Kpr,k0,t0

s , s;λ∗)ds, i.e., Kt moves at speed ϕpr(Kt, t;λ
∗) almost everywhere,24 where

ϕpr(k, t;λ∗) :=

ζpr(t)(k − P̂ pr(k, t)) +
∂

∂t
P̂ pr(k, t)− λ∗tπB(k)− `0πNB (k)

∂
∂k P̂

pr(k, t)


and ζpr(t) := − ∂

∂t log δ(t|λ∗) denotes the rate at which intervention is discounted at time t.

with the unique private RME outcome given by the above system starting from k = 1, t = 0−.

In the equilibrium policy triple
(
Kpu, P pu(·),L(·)

)
of the public game,

1. P pu(k) =

P̂ pu(k), k ≤ k†

P̂ pu(k†), k > k†
where P̂ pu is given by (17)

2. For k > k†, the cutoff immediately jumps down to k†, while for k ≤ k†, trade happens smoothly

at a strictly positive speed. For an initial state k0 ≤ k†, the cutoff evolves according to

Kpu,k0
t = k0 −

∫ t

0

ϕpu(Kpu,k0

s )ds.

where

ϕpu(k) := ζpu(k)

[
k − P̂ pu(k)−D(k)πB(k)− `0

`0+rπ
N
B (k)

(P̂ pu)′(k)

]
(19)

and ζpu(k) = − ∂
∂tδ(t|{Λ(k)}s≥0) denotes the rate at which intervention is discounted at state k.

Remark 3. Below I mostly provide the results for the interruption case. The adjudication case goes
through identically, simply by replacing the expressions for D,DX(t|λ∗), P̂ pu, P̂ pr, Rpu, Rpr through-
out with their adjudication counterparts, and replacing the expressions for the smooth trade speeds as
described in Theorem 5.

First, I provide details on the skimming property.

Lemma 2. Let σ be a random time of intervention and P = {Pt, t ≥ 0} denote some (possibly random)

sequence of price offers, and d = {dt, t ≥ 0} a sequence of audience intervention decisions. Under

Assumption 2, if v finds it weakly optimal to accept Pt at a time t given a history for σ, P , and d, then

any type v′ ≥ v also finds it weakly optimal accept.
24 By Assumptions 3 and 2, the numerator in the speed is strictly positive. The denominator is strictly positive for all k if

π′S(1) > 0, and strictly positive for k < 1 and zero for k = 1 if π′S(1) = 0. To accomodate that case, I consider solutions to the
initial value problem Kt = −ϕpr(Kt, t;λ∗) in the Caratheodory sense (see Lemma 9).
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Proof of Lemma 2. I prove the lemma for the adjudication case. The interruption case is the same
but simpler. I start off with some helpful notation. Let {Ht}t≥0 be the σ-algebra generated by
σ < t, {Pt′ , t′ ≤ t}, {dt′ , t′ ≤ t}, and let

U(v, τ) := E
[
e−rτ1σ≤τ (v − Pτ ) + e−rσ1σ<τ [dτπ

Y
B (v) + (1− dτ )]πNB (v)|Ht

]
.

Now fix any v, v′ with v′ > v. Adding and subtracting v′, πYB (v′), πNB (v′), one obtains the following
relations for any τ ∈ T :

U(v, τ) = U(v′, τ) + E
[
e−rτ1σ≤τ (v − v′)

+ e−rσ1σ<τ [dτ (πYB (v)− πYB (v′)) + (1− dτ )(πNB (v)− πNB (v′))
]
.

≥ U(v′, τ) + (v − v′)E[e−rτ∧σ]︸ ︷︷ ︸
:=δτ

(20)

where the inequality uses Assumption 2.
If v is indifferent between accepting and rejecting Pt, then using (20), for any τ ∈ T ,

v − Pt = sup
τ̃
U(v, τ̃) ≥ U(v′, τ) + (v − v′)δτ ≥ U(v′, τ) + (v − v′)

Hence v′ − Pt ≥ U(v′, τ) for arbitrary τ , and v′ − Pt ≥ supτ̃∈T U(v, τ̃).

Necessity

I prove that the private game has no jumps and no quiet periods for the interruption case; the remaining
case follows as in Remark 3.

Lemma 3. The private game equilibrium outcome has

1. No jumps in the cutoff path.

2. No quiet periods.

Proof. Suppose, by way of contradiction, that a private offers RME features jumps. Say a given jump
happens at time t̄, and goes from k̄ to k

¯
∈ (v

¯
, k). (The endpoint k

¯
must be strictly greater than v

¯
, since

seller can do better than that by making unreasonable offers indefinitely.) Since the equilibrium is
regular, by Lemma 1 the seller’s payoff at the end of the jump must satisfy

JprS (k
¯
, t̄) = DX(t̄|λ∗)ΠS(k

¯
). (21)

I now show the jump would never be optimal.25 First, since there is smooth trade after the final jump,
prices satisfy P pr(k

¯
, t̄) ≤ P̂ pr(k

¯
, t̄). Indeed, given the seller’s continuation payoff in (21), P̂ pr(k

¯
, t̄) is

the highest price at which |k̇| <∞ can solve the right hand side of the seller’s HJB in (40) (since JprS is
C1 in any RME, the HJB is necessary for seller optimality under smooth trade).

Let A(k, k′) = 1 − FB(k′)
FB(k) for k ≥ k′. Therefore, using (21) and the bound on P pr, the seller’s

payoffs from executing the final jump are at most

25 The logic of the argument borrows from Lemma 6 in Fuchs and Skrzypacz (2010).
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A(k̄, k
¯
)DX(t̄|λ∗)πS(k

¯
) + (1−A(k̄, k

¯
))DX(t̄|λ∗)ΠS(k

¯
)

<

A(k̄, k
¯
)DX(t̄|λ∗)E

[
πS(v)|k

¯
< v < k̄

]
+ (1−A(k̄, k

¯
))DX(t̄|λ∗)ΠS(k

¯
)

= DX(t̄|λ∗)ΠS(k̄),

(22)

The strict inequality follows from πS being strictly increasing, and the equality follows from A(k̄, k
¯
) =

P(vB ≥ k
¯
|vB ≤ k̄), ΠS(k

¯
) = E[πS(vB)|vB ≤ k

¯
< k̄], and ΠS(k̄) = E[πS(vB)|vB ≤ k̄]. The seller

can always achieve the far right hand side of (22) by making unreasonable offers forever, so the jump
cannot have been optimal. In particular, JprS (k, t) = DX(t|λ∗)ΠS(k) for all (k, t).

Next, suppose there were a quiet period on path in the private game. Concretely, suppose that, when
type vB = k is marginal at time t along the equilibrium path, continuation play prescribes a quiet period
until t∗ > t. Let V (k, t|λ∗) be the continuation payoff to k from rejecting offers until t∗, given costly
intervention rates λ∗. If there is a quiet period at (k, t), rejecting must be weakly optimal for type k, so
P pr(k, t) ≥ k − V (k, t|λ∗).

Then, since the quiet period is on path, and entrants have correct beliefs, λ∗z = Λ(k) for z ∈ [t, t∗].
In addition, as shown above, continuation play has no jumps; trading at (k, t∗) will therefore be smooth,
at a price P̂ pr(k, t∗) = DX(t∗|λ∗)πS(k). Hence,

V (k, t|λ∗) = EKk,t
[
1σ<t∗e

−r(σ−t)πB(k) + 1σ≥t∗e
−r(t∗−t) (k −DX(t∗|λ∗)πS(k)

)]
=

Λ(k)

r + Λ(k)

[
1− e−(r+Λ(k))(t∗−t))

]
πB(k) + e−(r+Λ(k))(t∗−t) (k −DX(t∗|λ∗)πS(k)

)
(23)

(Recall that σ|σ > t has pdf z 7→ λ∗ze
−

∫ z
t
λ∗νdν). Plugging in D(k)πB(k) < k − D(k)πS(k) (from

Assumption 3) and

DX(t|λ∗) =
Λ(k)

r + Λ(k)

[
1− e−(r+Λ(k)(t∗−t))

]
+ e−(r+Λ(k))(t∗−t)DX(t∗|λ∗),

into (23) yields
V (k, t|λ∗) < k −DX(t|λ∗)πS(k)

Therefore, P pr(k, t) ≥ k − V (k, t|λ∗) yields P pr(k, t) > P̂ pr(k, t). Once again, given JprS (k, t) =

DX(t|λ∗)ΠS(k), P̂ pr(k, t) is the highest price at which |k̇| < ∞ is still optimal for the seller. The
quiet period is therefore strictly suboptimal.

Given the previous lemma, the strictness claims in Theorems 1- 4 and Corollary 1 follows from
stochastic dominance.

Let σpr and σpu be the time of costly intervention conditional on state (k, t), given the stalling

deviation. With DEI, given no quiet periods on the path of the private game, λ∗t+s > Λ(k)∀s > 0,
λ∗t = Λ(k), so σpr|σpr > t strictly first-order-stochastically dominates σpu|σpu > t. Since e−rt is
strictly decreasing in t, DX(t|λi) = E[e−rσ

pr |σpr > s] and D(k) = E[e−rσ
pu |σpu > s], and the claim

follows. The DDI case is symmetric.

Lemma 4 (Quiet Periods). There are no quiet periods in the public game.

Proof. Take a cutoff path Kk by the seller with an initial quiet period of length t∗, i.e., Kk
t −Kk

0− = 0

for t ∈ [0, t∗) and Kk
t > Kk

t∗ for t > t∗. For ∆ ∈ (0, t∗), type k’s payoffs from waiting at (k, 0−)
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satisfy

V (k) =
Λ(k)

r + Λ(k)

[
1− e−(r+Λ(k))∆

]
πB(k) + e−(r+Λ(k))∆V (k)⇒ V (k) = D(k)πB(k) (24)

Rejection is weakly optimal for type k during the quiet period, so P pu(k) ≥ k − D(k)πB(k).
Since trade is (trivially) smooth at k by hypothesis, from Lemma 1,JpuS (k) = D(k)ΠS(k). Using
∂
∂k (ΠS(k)FB(k)) = π(k)fB(k), the coefficients on |k̇| in the seller’s HJB (12) therefore sum to at
least (k−D(k)(πB(k) + πS(k))) fB(k)

FB(k) −D
′(k)ΠS(k) > 0 during a time interval of positive measure,

where the inequality follows from Assumption 3. Hence, the seller’s HJB, which is necessary given
JpuS ∈ C1, would be violated on a time interval of positive measure, a contradiction.

Next, I provide a useful lemma that characterizes the seller’s incentives to jump the state when the
price at the resulting state is given by P̂ pu; additinoal lemmas connect the equilibrium price and P̂ pu,
which pins down the pattern of jumping in the game. In what follows, FB(k′; k) = FB(k′)/FB(k), and
fB(k′; k) = fB(k′)/FB(k), for k′ ≤ k, denote the CDF and pdf of vB conditional on a right-truncation
at k. Let

L(k, k′) := [1− FB(k′; k)] P̂ pu(k′) + FB(k; k′)Rpu(k′), k′ < k (25)

denote the payoff to the seller when she jumps the state from k to k′ and resumes smooth trade when
reaching state k′. Recall that Rpu denotes the seller’s reservation value from stalling, which equals her
payoffs from smooth trade.

Lemma 5. Fix two states 0 < k
¯
< k̄. If

P̂ pu(k
¯

) ≥ (≤)P̂ pu(k) ∀k ∈ [k
¯
, k̄], (26)

then L(k̄, k
¯

) ≥ (≤)Rpu(k̄), with strict inequality if (26) is strict.

Proof. Take some point k∗ ∈ [k
¯
, k̄] at which Rpu(k∗) ≥ L(k∗, k

¯
). Rearranging that condition,

FB(k
¯
; k∗)

[
P̂ pu(k

¯
)−Rpu(k

¯
)
]
≥ P̂ pu(k

¯
)−Rpu(k∗). Then

L1(k∗, k
¯
) =

fB(k∗)

FB(k∗)
FB(k

¯
; k∗)

[
P̂ pu(k

¯
)−Rpu(k

¯
)
]

≥ fB(k∗)

FB(k∗)

[
P̂ pu(k

¯
)−Rpu(k∗)

]
≥ fB(k∗)

FB(k∗)

[
P̂ pu(k∗)−Rpu(k∗)

]
= (Rpu)′(k∗)

The second inequality uses (26) and the last equality uses the definition of P̂ pu. Since L(k
¯
, k

¯
) = Rpu(k

¯
),

the weak version of the lemma follows (e.g. Milgrom (2004), p. 124), and the strict one is proved
similarly.

I can now pin down equilibrium prices in the public game.

Lemma 6. Let mon P̂ pu(k) = supk′≤k P̂
pu(k′) be the monotone hull of P̂ pu, i.e., the smallest increas-

ing function that is everywhere above P̂ pu. Then, in any public equilibrium,

• P pu ≤ mon P̂ pu.

• If Assumption 4.1 holds, P pu = mon P̂ pu.
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Proof. First, I enumerate some key facts:

1. If equilibrium prescribes a jump between k and k′ < k, P pu must be constant in the interval
[k′, k], and P pu(k) = P̂ pu(k′).

2. If equilibrium prescribes smooth trade at a positive speed in a neighborhood of k, then P pu, P̂ pu,
and mon P̂ pu must equal each other in that neighborhood.

3. If mon P̂ pu is strictly increasing on a neighborhood of k, it must equal P̂ pu in that neighborhood.

To prove the first item in the lemma, notice that at any k with P pu(k) > mon P̂ pu(k), P pu(k) >

P̂ pu(k) as well, and smooth trade would not be incentive-compatible for the seller. Hence, equilibrium
must involve a jump down to some k′ < k. By the Fact 1 above,

P pu(k) = P pu(k′) = P̂ pu(k′) ≤ mon P̂ pu(k),

a contradiction. It must then be the case that P pu ≤ mon P̂ pu.
To prove the second item in the lemma, let k

¯
= inf{k : P pu(k) 6= mon P̂ pu(k)}, and assume,

to derive a contradiction, that k
¯
< 1. Notice that mon P̂ pu is continuous, since P̂ pu is. Since

P pu ≤ mon P̂ pu and P pu is weakly increasing, there must exist some ε > 0 such that mon P̂ pu is
strictly increasing for k ∈ (k

¯
, k

¯
+ ε] and P pu(k) < mon P̂ pu(k) and P̂ pu(k) = mon P̂ pu(k) in that

range. For future reference, note the additional consequence that k̄ + ε must be strictly less that k†,
where the latter is as defined in Assumption 4.

Jumps in equilibrium paths are isolated, so there must further exist some δ ∈ (0, ε) such that (i)
equilibrium mandates a jump from k

¯
+ δ to k

¯
, or (ii) equilibrium mandates smooth trade from k

¯
+ δ to k

¯
.

The second possibility is ruled out by the Facts 2 and 3 above: by Lemma 4, trade must occur at a strictly
positive speed as the interval (k

¯
, k

¯
+ δ) is traversed, which would require P pu = P̂ pu = mon P̂ pu over

that interval, a contradiction.
Suppose, then, that there were a jump between k

¯
+ δ and k

¯
. It must then be the case that

P̂ pu(k
¯
) = mon P̂ pu(k

¯
) = P pu(k

¯
).

The first equality follows from k
¯
< k† and Assumption 4.1. The second equality follows from the

continuity of mon P̂ pu:

P pu(k−) ≤ P pu(k+) ≤ mon P̂ pu(k+) = mon P̂ pu(k+) = P pu(k−)

From the last display, and the fact that jumps are isolated so smooth trade (possibly at zero speed) must
resume at k

¯
, the seller’s payoffs from jumping to k

¯
from k

¯
+ δ must equal

L(k
¯
, k

¯
+ δ) := [1− FB(k

¯
; k

¯
+ δ)] P̂ pu(k

¯
) + FB(k

¯
; k

¯
+ δ)D(k

¯
)ΠS(k

¯
).

However, P̂ pu is strictly increasing in [k
¯
, k

¯
+ δ], so Lemma 5 implies that L(k

¯
, k

¯
+ δ) < D(k

¯
)ΠS(k

¯
).

The jump would be strictly suboptimal for the seller, a contradiction. Hence k
¯

= 1, and P pu =

mon P̂ pu.

Lemma 7 (Qualitative Dynamics). Consider any public equilibrium and any initial state k0. Under

Assumptions 1-4, if k > k†, the state jumps to k† immediately. If k ≤ k† trade is smooth.

Proof. From Lemma 6 and the fact that jumps are isolated, the seller’s payoff an on-path jump
from k ≤ k† to k̃ < k are L(k, k̃). Differentiating with respect to k and using (17), L1(k, k̃) =
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A(k̃, k)(P̂ pu)′(k̃) > 0. Jumping to k̃ 6= k is strictly suboptimal, and there must be smooth trade at
k ≤ k†. Finally, for k > k†, P̂ pu(k) < P̂ pu(k†), so by Lemma 5, the seller strictly prefers jumping to
k† than trading smoothly.

Uniqueness of Trading Speeds: Suppose that, given a price path P = {Ps}s≥0 and costly intervention
rates λ = {λs}s≥0, a type vB finds it optimal to trade at time t. Then, if s 7→ Ps is differentiable at t
and s 7→ λs is continuous, the following first order condition is necessary:

∂

∂t
UvBB (t,P,λ) =

∂

∂t
δ(t;λ)(vB − Pt) + δ(t;λ)

d

dt
Pt + δ(t;λ)[λtπB(vB) + `0π

N
B (vB)] = 0

which simplifies to

∂

∂t
log δ(t;λ)(k − Pt) +

d

dt
Pt + λtπB(k) + `0π

N
B (k) = 0 (27)

So consider an initial state (k0, t0) of the private game with continuation cutoff path Kk0,t0 , con-
tinuation prices {Pt}t≥0 = {P̂ pr(Kk0,t0

t , t0 + t|λ∗)}t≥t0− and continuation (costly) intervention rates
L∗t0 = {λ∗t0+t}t≥0. Take a marginal type vB = k < k0 that trades at a time t0 + t in the interior of a
smooth trade region Ī = [t

¯
, t̄) ⊂ (t0,∞) under that continuation. Then plugging in the expression for

Pt in (27), using d
dtPt = ∂

∂k P̂
pr(Kk0,t0

t , t0 + t|λ∗)K̇t + ∂
∂t P̂

pr(Kk0,t0
t , t0 + t|λ∗), and Leibniz’s rule,

−K̇k0,t0
t = ϕpr(Kk0,t0

t , t+ t0;λ∗). This proves the rate expression for the private game. For the public
game starting at state k0, following the same argument but using Pt := P̂ pu(Kk0

t ) and Λ(Kk0
s ) instead

of λ∗s in (27), one likewise obtains K̇k0
t = −ϕpu(Kk0

t ).

Ranking Results

Proof of Theorem 3. It was shown in the text that, if type k > 0 trades smoothly in both the public and
private games,

ppr(k) > (<) ppu(k) whenever DEI (DDI) holds.

Suppose instead instead k trades in an atom in the public offers equilibrium. If the environment is
DDI, ppr(k) < P̂ pu(k) ≤ ppu(k), where the last inequality follows from P pu = mon P̂ pu. If the
environment is DEI, then, using Theorem 5, there exists some k† < k (the left endpoint of the jump that
k is part of) such that k† trades smoothly, and

ppu(k) = ppu(k†) = P̂ pu(k†) < ppr(k†). (28)

By Theorem 5, k† trades strictly later than k in the private game, since there is smooth trade at a strictly
positive speed for all states on path. Rearranging the speed of trade in Theorem 5.3, one finds that private
prices have a strictly negative total derivate with respect to time:

(λ∗t + r)

[
Kt − P̂ pr(Kt, t)−

λ∗t
λ∗t + r

πB(Kt)

]
= − d

dt
P̂ pr(Kt, t)

where the left hand side is strictly positive by Assumption 3. Hence, ppr(k†) < ppr(k), which together
with (28) proves the DEI price ranking.

Next, I show the cutoff ranking for the DEI case—the DDI argument follows symmetrically. I
claim that, whenever Kpu

t = Kpr
t and both are dropping smoothly, Kpu is dropping faster. Since

Kpu
0− = Kpr

0− = 1, and Kpu has downward jumps but Kpr always decreases smoothly, the result will
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follow. Let t∗ be a time at which Kpu and Kpr meet, and let k∗ denote their common value at that time.
It suffices to show that26

ϕpr(k∗, t∗;λ∗) < ϕpu(k∗) (29)

To simplify that comparison, note that, since (k∗, t∗) is on path, λ∗t∗ = `0G(ΠA(Kpr
t∗ )) = Λ(k∗); since

the public offers RME has smooth trading at k∗, Λ(k∗) is also the public costly intervention rate at
Kpu
t∗ = k∗, and D(k∗) =

λ∗t
λ∗t+r . After plugging in the expressions for P̂ pu and P̂ pr from (17), the

trading speeds become

ϕpu(k∗) = (λ∗t∗ + r)

k∗ − λ∗t∗
λ∗
t∗+r (πB(k∗) + πS(k∗))−D′(k∗)ΠS(k∗)FB(k∗)

fB(k∗)

D(k∗)π′S(k∗) +D′(k∗)πS(k∗) + ρ′(k∗)


ϕpr(k∗, t∗|λ∗) = (λ∗t + r)

k − λ∗t
λ∗t+r (πB(k) + πS(k))

DX(t|λ∗)π′S(k)


where I have simplified using Leibniz’s rule: ∂

∂tD
X(t|λ∗) = −λ∗t + (r + λ∗t )D

X(t|λ∗).
Consider the fractions in square brackets. The numerator on ϕpu(k∗) is strictly larger than the

one in ϕpr(k∗, t∗|λ∗), since D′(k∗) < 0. Log-concavity of FB and the diminishing effects condition
(Definition 9) ensures that ρ′(·) < 0. Together with D(k∗) < DX(t∗|λ∗), π′S(·) > 0, and D′(·) < 0,
one has that the denominator in ϕpu(k∗) must also be strictly smaller than the one in ϕpr(k∗, t∗|λ∗),
which concludes the proof of the DEI case. For the DDI case, since D′(·) > 0 and ρ′(·) > 0, it follows
that (P̂ pu)′(k) > 0 for all k, so the state does not jump in the public game. All the arguments above now
apply symmetrically to rank ϕpu(k∗) and ϕpr(k∗, t∗|λ∗), since log-concavity of FB and the diminishing
effects condition now ensure ρ′(·) > 0.

Existence

I start with two workhorse lemmas that guarantee that the smooth trade paths defined by Theorem 5 are
well defined.

Lemma 8. Let h : R+ → R be a continuous, monotone function that is absolutely continuous on [t, a],

for every t ∈ (0, a). Then h is absolutely continuous on all of [0, a].

Proof. It suffices to show for h increasing. Then by Lebesgue’s theorem on the differentiability of
monotone functions, h has a derivative h′ that exists almost everywhere, is (Lebesgue) integrable, and
satisfies

h(t′)− h(t) ≥
∫ t′

t

h′(s)ds, 0 ≤ t ≤ t′ (30)

By assumption, for t > 0, t′ ∈ [t, a], (30) must hold with equality.
Fixing ε ∈ (0, t′), since h′ ≥ 0 almost everywhere,

h(t′)− h(ε) =

∫ t′

ε

h′(s)ds ≤
∫ t′

0

h′(s)ds ≤ h(t′)− h(t)

Taking limits as ε↘ 0, (30) holds with equality for all t.
26 (29) suffices if (k∗, t∗) is in the interior of a smooth trading region of Kpu. If (k∗, t∗) is at the start of a smooth trade

region and (P̂ pu)′(k∗) > 0, the right-derivative of Kpu is still given by (19), and if (P̂ pu)′(k∗) = 0, Kpu is dropping at an
infinite speed at t∗ (with the law of motion of Kpu is given in a Carathéodory sense, as in Lemma 9.3.) so there is nothing to
prove.
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Lemma 9. Let λ denote a smooth costly intervention rate path t 7→ λt taking values in [Λ(1),Λ(0)],

and let [k
¯
, k̄) be a non-empty interval on which (P̂ pu)′(k) ≥ 0 with strict inequality for k < k̄. Let

IV P pu(k0) and IV P pr(k0, t0) denote, respectively, the initial value problems

K̇t = −ϕpu(Kt), K0 = k0, (31)

K̇t = −ϕpr(Kt, t;λ), Kt0 = k0

with ϕpu and ϕpr given by Theorem 5. Then

1. For any k0 ∈ (k
¯
, k̄], IV P pu(k0) has a unique (forward) Caratheodory solution Kpu

t
27 on a

maximal interval of existence [0, t+).

(a) If k
¯

= v
¯

, t+ =∞, and for all t′ ∈ [0,∞), Kpu
t′ > 0 = limt→∞Kpu

t .

(b) If k0 < k̄, or if k0 = k̄ and (P̂ pu)′(k̄) > 0, Kpu
t is C1 for all t ∈ [0, t+). Otherwise, it is

C1 for t ∈ (0, t+).

2. For any (k0, t0), k0 > 0, IV P pr(k0, t0) has a unique (forward) Caratheodory solution Kpr
t

defined for all t ≥ 0.

(a) For all t′ ∈ [0,∞),Kpr
t0+t′ > 0 = limt→∞Kpr

t0+t.

(b) If k0 < 1, or if k0 = 1, π′S(1) > 0, Kpr
t is C1 for all t. Otherwise, it is C1 for t > 0.

Proof. Assumption 1 implies that ϕpu and ϕpr are C1 in k, on (0, k∗) and (0, k′) for any k′ < 1,
respectively. Taking derivatives on (13), using ΠS(v

¯
+) = FB(v

¯
+) = πS(v

¯
+) = 0, (P̂ pu)′(v

¯
+) =

D(v
¯
+)π′S(v

¯
+) > 0. The denominators of ϕ̂pu and ϕ̂pr remain strictly positive as k ↓ v

¯
, so by the

quotient rule, ϕ̂pu is C1 in k on [v
¯
, k∗), and ϕ̂pr is C1 in k on [v

¯
, 1]. Second, since t 7→ λt is continous

and bounded away from zero, DX(·|λ) is strictly positive, bounded, and C1. Since t 7→ λt in fact, C1,
ϕpr is C1 with respect to t for all t ≥ 0, for k > 0. Therefore ϕpu and ϕpr both satisfy a local Lipschitz
condition in the cutoff variable; and by the Picard-Lindelöf Theorem, IV P pu(k0) and IV P pr(k0, t0)

have locally unique solutions for k0 ∈ (k
¯
, k̄) and k0 < 1, t0 ≥ 0, respectively.

I prove existence of Caratheodory solutions on a maximal interval for IV P pu(k0). The claims
about IV P pr(k0, t0) follow by almost identical arguments and are omitted. Let K̂t denote the locally
unique solution to IV P pu(k0). Since ϕ̂pu ≥ 0, Lemma 7.2 in Teschl (2012) implies that there exist
t+ > 0, t− < 0 such that (i) limt↗t+ K̂t = 0; and (ii) t− > −∞ and limt↘t− K̂t = k̄, i.e. exits [0, k̄)

through k̄ in finite time. If k
¯

= v
¯
, then t+ =∞, as 0 then becomes a critical point of the planar system.

This proves item 1 for all k0 < k̄, and for the k0 = k̄, (P̂ pu)′(k̄−) > 0 case. For k0 =

k̄, (P̂ pu)′(k̄−) = 0, take the solution K̂t found above, which reaches k̄ at t− < 0, and define
K̃t := K̂t+t− , t ∈ [0, t+ − t+). K̃t is continuous, decreasing, and absolutely continuous on [t̄, t+).
By Lemma 8, K̃t is absolutely continuous on [0, t+), so it is a Caratheodory solution to IV P (k̄), as
required.

Proof of Theorem 5. Optimality for the seller is a special case of the verification arguments for the gap
case (see Proposition 2 and the discussion following it).

Optimality for the audience follows immediately from L(k) = Λ(k). Optimality for the buyer
follows by a direct mechanism representation of continuation play and the single-crossing properties of

27 That is, there exists an absolutely continuous path K that satisfies K0 = k0 and K̇t = −ϕ̂pu(Kt) almost everywhere. This
is to handle the possibility that (P̂ pu)′(k̄) = 0.
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the buyer’s payoffs. I show the argument for the public game—the private game is analyzed in the exact
same way, expanding the notation so that the continuation payoff to depend on calendar time. Let K
denote any continuation cutoff path of the public game, and denote K−1(k) = inf{t ≥ 0 : Kt ≤ k}. I
show that the buyer has no profitable deviations on-path assuming K is the continuation path starting
from state k0 = 1, but the same argument applies for any k0. Define

V(τ, vB) := UvBB (τ,Ppu(K),L(K))

Φ(v, v′) := V(K−1(v′), v),

Φ is the payoff to v from mimicking v′ given a continuation path K. From (27), the function V satisfies
the smooth single-crossing differences property in (−τ, v) for τ > 0, and single-crossing differences
everywhere. Moreover, for τ > 0, it is partially differentiable in both arguments. A close look at the
proof of Theorem 4.2 in Milgrom (2004) shows that this suffices for the Theorem to apply if K−1(v)

is absolutely continuous.28 Note (i) K−1(v) = 0 for v ∈ [k†, 1] (and therefore is non-increasing and
absolutely continuous there), and (ii) K is continuously differentiable and strictly decreasing on (0,∞),
so K−1(·) is differentiable on [0, k†) with a strictly negative derivative (and also absolutely continuous
on that range). By Lemma 8, K−1 is therefore absolutely continuous on [0, 1].

By Theorem 4.2 in Milgrom (2004), if I can show

Φ(v, v) = Φ(0, 0) +

∫ s

0

Φv (s, s) ds, (32)

then incentive compatibility for K−1(·) follows, and buyer’s have no deviations on path. Using (19) and
(27),

K̇t = −ϕpu(Kt), t >K
−1(k†)⇔ Φv′(v, v) = 0, v ∈ [0, k†),

so d
dvΦ(v, v) = Φv(v, v) on [0, k†) on [0, k†). Φ(v, v′) = v−P̂ pu(k†) for v′ ∈ [k†, 1], so Φv′(v, v) = 0

and d
dvΦ(v, v) = Φv(v, v) = 1 on that range. Since v 7→ Φ(v, v) is absolutely continuous (since

K−1 is, and V is in each argument), one can therefore integrate up to obtain (32) on [0, 1] (with
Φ(0, 0) = 0)).

Private Offers: Existence and Uniqueness of Intervention Rates λ∗

Verification for all three players follows analogously to the public game. What remains to be shown is
the existence and uniqueness of the requisite fixed point in on-path cutoff paths and audience beliefs.
These follow from the next lemma:

Lemma 10. Fix k̆ ∈ (0, 1], z̆ ∈ (D(k̆), D(0)), and consider the autonomous system

k̇ = χ(k, z) :=
−(r + Λ(k))k + Λ(k) (πS(k) + πB(k))

zπ′S(k)

ż = θ(k, z) := −Λ(k) + (Λ(k) + r)z

(33)

on the domain

D = {(k, z) : k ∈ (0, k̆], D(k) < z < D(0)},
28 Differentiability properties of g in his notation are only used to derive the chain rule for d

ds
g(x̄(s), s) and in the definition of

the smooth single-crossing differences property (which can be stated without assuming continuous differentiability). Moreover, it
suffices in his proof that the conditions hold almost everywhere at the points of differentiability of the absolutely continuous part
of the allocation x̄.
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and the associated initial value problem

(33) subject to k0 = k̆, z0 = z̆. (34)

There exists a unique value of z̆, denoted z∗, for which (34) has a (forward) Caratheodory solution that

1. exists in D for all t ∈ R+, and

2. satisfies limt→∞ e−rt−
∫ t
0

Λ(ks)dszt = 0.

I explain how the existence of a fixed point of beliefs in Theorem 5 follows from the lemma before
proceeding with its proof. Recall that the correctness of entrant beliefs requires that the equilibrium
cutoff path, call it K∗, and the equilibrium costly intervention rate λ∗ satisfy, for all t ≥ 0−,

K̇∗t =
−(r + Λ(K∗t ))K∗t + Λ(K∗t ) (πS(K∗t ) + πB(K∗t ))

DX(t|λ∗)π′S(K∗t )
,

λ∗t = Λ(K∗t ),

K0 = 1.

(35)

To connect (33) and (34) to (35), fix a continuous, bounded costly intervention rate path λt, t ≥ 0, and
consider the initial value problem

żt = −λt + (λt + r)zt, z0 = z

which has a global solution (e.g., Corollary 2.6 in Teschl (2012)). Letting yt = e−
∫ t
0

(r+λs)dszt and
multiplying on both sides by e−

∫ t
0

(r+λs)dszt, one obtains

ẏt = −λte−
∫ t
0

(r+λs)dszt.

Integrating forwards from time t and backwards from time T ,

yt =

∫ T

t

λse
−

∫ s
0

(r+λl)dlds+ yT ⇔ zt − e−
∫ T
t

(r+λs)dszT =

∫ T

t

λse
−

∫ s
t

(r+λl)dlds.

As T →∞, the expression on the far right hand side becomes the expectation of the bounded function
e−rt, so it must converge. Hence, from the last display, one gleans two facts. First, limT→∞ e−

∫ T
0

(r+λs)dszT

exists, and equals 0 for a unique value of z0, which is DX(0|λ). Second,

zt = DX(t|λ)∀t ⇔

 żt = −λt + (λt + r)zt

lim
t→∞

e−
∫ t
0

(r+λs)dszt = 0

 ⇔

(
żt = −λt + (λt + r)zt

z0 = DX(0|λ)

)
. (36)

Lemma 10 requires two preliminary results.

Lemma 11. Fix k̆ < 1, and let

A := {(k, z) : k ∈ (0, k̆], z = D(k)}

B := {(k, z) : k ∈ (0, k̆], z = D(0)}

E := {(k, z) : k = k̆, z ∈ (D(k̆), D(0))}

denote, respectively, the lower, upper and right boundaries of D in (k, z)-space. Then

1. For any (k0, z0) ∈ A ∪B, there exists a unique backward solution ϕk0,z0(t) to (33) that exits D
through E at a finite time T− ∈ (−∞, 0).
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2. For any (k0 = k̆, z0) ∈ E, there exists a unique forward solution ϕk̆,z0(t) to (33) that either (i)

exits D through A∪B in a finite time T+ ∈ (0,∞), or (ii) exists in D for all t ∈ R+ and satisfies

limt↗∞ ϕk̆,z0(t) = (0, D(0)).

Lemma 12. For k̆ < 1, let EA denote the set of z ∈ (D(k̆), D(0)) for which there exists (k0, z0) ∈ A
such that a negative orbit of (33) starting at (k0, z0) exits D through (k̆, z) ∈ E, and likewise for EB .

Then EA and EB (i) are non-empty disjoint intervals, (ii) supEA ≤ inf EB , (iii) inf EA = D(k̆), and

(iv) supEB = D(0).

Proof of Lemma 11. I prove item 1; the proof of item 2 is nearly identical and left to the reader. Existence
is standard: since the right hand side of (33) isC1 (thus locally Lipschitz) onD, for any (k0, z0) ∈ A∪B,
there exists a unique backward solution ϕk0,z0(t) = (kt, zt) to (33) on a maximal interval of existence
(T−, 0] (Theorem 2.13 in Teschl (2012)).

On int D, χ < 0 and θ > 0, so ϕk0,z0(t) only moves south-east in the (k, z) plane as t ↘ T−.
Since the only possible critical point of (33) in cl D is at (0, D(0)), it follows from Lemma 7.2 in
Teschl (2012) that ϕk0,z0 must exit D in finite time (T− ∈ (−∞, 0)), and it cannot exit through B. If
ϕk0,z0 were to exit through A at some point (k,D(k)), the orbit it traces would have to cross D(·) from
above. However, since D′(k) < 0 and θ(k,D(k)) = 0, the orbit is never steeper than D(·) at a point of
intersection with A.

Proof of Lemma 12. (i) Non-emptiness follows from Lemma 11.1. A and B are disjoint, so z ∈
EA ∩ EB would violate the local uniqueness of forward solutions to (33). To prove connectedness, take
z′, z′′ ∈ EA with z′ < z′′, and suppose some z̆ ∈ (z′, z′′) is not in EA. Then the forward orbit of (33)
starting at (k̆, z̆) exits D through B ∪ {(0, D(0)}, but this would mean that it intersects the forward
orbit starting at (k̆, z′′), a contradiction. EA is therefore connected; the connectedness of EB follows by
identical arguments. (ii) If there were some z′ ∈ EA, z′′ ∈ EB with z′ > z′′, by Lemma 11.1 we would
find backward orbits of (33) that intersect inside D. Hence supEA ≤ inf EB . (iii) Finally, suppose,
toward a contradiction, that inf EA > D(k̆), and take some z′ ∈ (D(k̆), inf EA). Since z′ /∈ EA, the
forward orbit to (33) starting at (k̆, z′) would need to exit D through B or (0, D(0)), but this would
imply that it intersects forward orbits starting that start at (k̆, z), z ∈ EA, a contradiction. A symmetric
argument rules out supEB < D(0).

Proof of Lemma 10. Notice that the boundary condition in the second item follows immediately from
global existence inside D: if the solution stays in D, zt ∈ (D(1), D(0)),∀t. Hence, by Lemma 11,
it suffices to show that, for any k̆ ∈ (0, 1], (i) there exists some z∗ such that a forward solution to
(33) starting at k0 = k̆, z0 = z∗ exits D through (0, D(0)), (ii) z∗ is unique, and (iii) that solution is
absolutely continuous even when k̆ = 1, π′S(1−) = 0.

Existence, k̆ < 1: . I show z∗ := supEA has the required properties. Again using Lemmas 11.2 and
12, for each z ∈ (D(k̆), supEA), there exists a unique ιA(z) ∈ (D(k̆), D(0)) such that the forward
solution to (33) with initial condition k0 = k̆, z0 = z exits D through (D−1(ιA(z)), ιA(z)). The
mapping ιA must be weakly increasing, since distinct orbits of (33) cannot cross inside D; it must
be strictly increasing, since z′ < z′′ with ιA(z′) = ιA(z′′) would violate uniqueness of backward
solutions to (33) starting at k0 = D−1(ιA(z′)), z0 = ιA(z′). Moreover, ῑ := limz↗z ιA(z) = D(0).
ῑ ≤ D(0) is immediate from the definition of D. If ῑ < D(0), then for small enough ε > 0, the

A11



point y = (D−1(ῑ+ ε), ῑ+ ε) is in A. Since the orbits of (33) cannot intersect, the backward orbit of
(33) starting at y would exit D through E at a point strictly above (k̆, supEA), which contradicts the
definition of supEA.

So let (k̃, z̃) denote the point at which the forward solution to (33) starting at (k̆, supEA) reaches
bd D (either asymptotically or in finite time). That point is unique (by local uniqueness of solutions to
(33)). Since orbits of (33) cannot intersect inside D, (k̃, z̃) must satisfy, for any ε > 0,

ιA(z − ε) ≤ z̃ ≤ D(0),

0 ≤ k̃ ≤ D−1(ιA(z − ε)).

Taking limits as ε↘ 0, we obtain, using D′(·) < 0, (k̃, z̃) = (0, D(0)).

Uniqueness, k̆ < 1.: Suppose there existed z
¯
, z̄ ∈ (D(1), D(0)), z

¯
< z̄ such that (33) has a forward

solution inside D with the required boundary condition for two initial conditions k0 = k̆, z0 = z
¯

and
k0 = k̆, z0 = z̄. Denote the respective solution paths by (k

¯ t
, z

¯t
) and (k̄t, z̄t), and let λ

¯ t
:= Λ(k

¯ t
) and

similarly for λ̄t.
Let T+ denote the largest time for which both solutions exist. First, I claim that for any t ≤ T+,

k̄t ≥ k
¯ t

, strictly for t ∈ (0, T+), which implies that λ̄t ≤ λ
¯ t

, strictly for t ∈ (0, T+). Suppose there
were some t∗ ∈ (0, T+) with k̄t∗ = k

¯ t
∗ (if there are many, choose the earliest such moment). Since

k̄0 = k
¯0 and z̄0 > z

¯0, the expression for θ in (33) implies that limt↘0
˙̄kt < limt↘0 k̇¯ t

, so at t∗, k̄t must
be crossing k

¯ t
from above, i.e. k̇

¯ t
∗ ≤ ˙̄k∗t . k̇

¯ t
∗ = ˙̄k∗t would violate uniqueness of backwards solutions to

(33), so from the expression for χ in (33), k̄t∗ = k
¯ t
∗ requires z̄t∗ < z

¯t
∗ . The latter is impossible, since

it would require the orbit traced by (k̄t, z̄t) to have crossed the orbit traced by (k
¯ t
, z

¯t
) inside D.

Second, from (36) and the related discussion, the system żt = −λ
¯ t

+ (λ
¯ t

)zt, z0 = z̄ has a solution
z̃t for which limt→∞ e−

∫ t
0

(r+λ
¯ s

)dsz̃t > 0. I claim that z̃t ≤ z̄t for all t ≥ 0. Using λ
¯ t
> λ̄t, t > 0, one

obtains that, at any point t′ > 0 at which z̃t′ = z̄t′ ,

˙̃zt′ = rz̃t′ + λ
¯ t
′(z̃t′ − 1) < rz̄t′ + λ̄t(z̄t′ − 1) = ˙̄zt′

where the inequality uses the fact that z̄t =
∫∞
t
λ̄se
−

∫ s
t

(r+λ̄l)dlds ∈ (0, 1). Therefore z̃t only crosses
z̄t from above; since z̄0 = z̃0, the ranking follows.

The above implies that, for all t > 0,

e−
∫ t
0

(r+λ̄s)dsz̄t > e−
∫ t
0

(r+λ
¯ s

)dsz̃t > 0

and thus one obtains the contradiction

lim
t→∞

e−
∫ t
0

(r+λ̄s)dsz̄t > lim
t→∞

e−
∫ t
0

(r+λ
¯ s

)dsz̃t > 0.

k̆ = 1, π′S(1−) = 0 case: If π′S(1−) > 0, the argument above follows identically for k̆ = 1. It remains
to show existence, uniqueness and absolute continuity of the solution hold even if k̆ = 1, π′S(1−) = 0.
The argument starts with k̆ < 1 and finds the right kind of limit.

So consider any k̆ < 1, and let z∗
k̆
,Dk̆ and Ek̆ be as in Lemmas 10 and 11, with the dependence

on k̆ made explicit. By identical arguments to those given in Lemma 11, starting from k0 = k̆ and
z0 = z∗

k̆
, (33) has a unique solution (k(t), z(t)) in D1 on a maximal interval of existence (T−, T+).

Moreover, by Lemma 11.1, T− ∈ (−∞, 0), limt↘T− k(t) = 1 and limt↘T− z(t) ∈ (D(1), D(0)).
Define z∗1 := limt↘T− z(t). The functions
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k◦(t) := k(t+ T−), k◦(0) := 1,

z◦(t) := z(t+ T−), z◦(0) := z∗1 ,
(37)

defined for t ≥ 0, are therefore continuous forward trajectories that start in E1 and exit D1 through
(0, D(0)). This establishes existence for k̆ = 1. If a forward trajectory k0 = 1, z0 ∈ (D(1), D(0)) with
z0 6= z∗1 existed globally and reached (0, D(0)), it would have to intersect the orbit traced by k◦(t), z◦(t)
at some t > 0, a contradiction. Thus the trajectory has a unique starting point in E1.

Next, notice that (k◦(t), z◦(t)) are continuous, monotone and C1 for t > 0. Moreover, for t >
0, t′ > t, (k◦, z◦) solve (33) classically. Hence, since χ is continuous for k ∈ [0, 1), z ∈ (D(1), D(0)),
k◦ satisfies the integral equation

k◦(t′)− k◦(t) =

∫ t′

t

χ(k(t+ T−), z(s+ T−))ds, 0 < t ≤ t′.

Absolute continuity on [0,∞) then follows from Lemma 8. An identical procedure yields the absolute
continuity of z◦.

B Gap Case, Removing Assumption 4.2

Here I describe results for the gap case. This section covers definitions, necessary conditions and ranking
results comparing the public and private games, and equilibrium constructions for the public game, all
under Assumption 4.1 Constructions of off-path behavior for the private game are in Online Appendix
A.2 The public no-gap case without Assumption 4.1 is treated in Online Appendix A.4; the case with a
gap and removing Assumption 4.1 is straightforward from there and omitted, to avoid redundancy.

The construction for both the gap case and the case of general P̂ pu borrows heavily from the
continuous time “Weak Markov” equilibrium proposed in Chaves and Varas (2022).29 Incorporating the
gap case requires an expanded strategy for the seller and an expanded equilibrium notion.

Definition 10 (Seller Strategy, Gap). A plan for the seller is a cutoff path K and a stopping time T at
which to make the pooling offer P pu(v

¯
). The seller can mix over stopping times T according to a CDF

H = (Ht)t≥0. Say that the stopping time mix H is Markov if its hazard measure is a function of Kt−

only. A plan (K, H) is admissible if K is admissible according to definition 4, and Agak denotes the set
of admissible plans with cutoff paths starting at k, i.e., K0− = k.

For a seller plan (K, H), say there is smooth trade a smooth trade region is a time interval [t
¯
, t̄)

where t 7→ Kt is absolutely continuous and H is constant, i.e., trade is gradual and the pooling offer is
not used. For any such region, K̇t denotes the (a.e.) derivative of Kt.

Given a cutoff path Q and a realization of the stopping time T , the seller’s expected payoffs are, for
the interruption case,

J (Q, T ) :=EQ
k

[∫ σ∧T

0

e−rtP pu(Qt)d(1− FB(Qt; k))

+ e−rσ1σ≤TFB(Qσ; k)ΠS(Qσ) + e−rT1σ>TFB(QT ; k)P pu(v
¯
)

]
. (38)

29 See that paper for additional details. I thank Felipe Varas for many insightful conversations on the topic.
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The seller therefore solves
sup

(Q,H)∈AUk

∫ ∞
0

J (Q, T )dH(T ). (39)

Buyer vB’s payoffs from stopping at τ for a path K and stopping time T are

EKk [e−rτ1τ≤T∧σ(vB − P pu(Kk
τ ) + e−rσ1σ<τ∧TπB(vB) + e−rT1T<τ∧σ(vB − P pu(v

¯
)]

Let B(vB , k) denote the value function for buyer vB at state k.

Definition 11 (Weak Markov Equilibrium, Public Gap). A Weak Markov Equilibrium is an on-path
tuple

({Kk}k∈[v
¯
,1], H, P

pu,L),

and an off-path offer mix ς for the seller, and value functions Jpu(·) for the seller and B(·, ·) for the
buyer, such that

1. (Kk, H) solve (39) for each k and deliver Jpu(k).
2. For any k, stopping at inf{t : P pu(Kk

t ) ≤ P pu(vB)} is optimal for vB , for all vB ∈ [v
¯
, 1] and

delivers value B(vB , k).
3. L(k) = Λ(k).
4. P pu(v

¯
) = v

¯
−D(v

¯
)πB(v

¯
).

5. For any point of discontinuity of P pu, k′, and any off-equilibrium offer p′ ∈
(P pu(k′+), P pu(k′−)), ς(·|k′, p′) maximizes30∫ ∞

0

p̃
{

(1− FB((P−1(p̃); k′)))+

+FB((P pu)−1(p̃); k′)Jpu
(
P−1(p̃)

)}
dς(p̃|k′, p′)

and satisfies

k′ − p′ ≤ B(k′, k′)

∫ ∞
Ppu(k′−)

dς(p̃|k′, p′) +

∫ Ppu(k′−)

0

(k′ − p̃) dς(p̃|k′, p′)

Condition 5, borrowed from Chaves and Varas (2022), models off-path behavior (i.e., offers that are
not called for at any (k, t) by “stopping the clock”: after a “mistaken” offer p′, the seller can mix over
future offers according to a lottery ς , but that mix must rationalize the buyer’s choice to accept according
to P pu on path. The lottery can depend on both the state and the previous mistaken price; hence the
equilibrium is “Weak Markov” in the sense of Fudenberg et al. (1985) and Gul et al. (1986).

Remark 4 (Private Offers Weak Markov Equilibrium). The equilibrium notion for the private offers
gap case is obtained from the public game with the usual changes (e.g., prices P pr are a function of both
(k, t) and the seller takes the costly intervention rate as exogenous; the formal definitions are evident
from the no-gap case). Therefore a tuple

(
{K}k,tk∈[v

¯
,1],t∈[0−,∞), H, P

pr, {λ∗t }t≥0

)
together with buyer

and seller value functions and an off-path seller lottery ς are a private Weak Markov equilibrium if they
satisfy the optimality conditions from Definition 11 (suitably modified for the two-dimensional state
(k, t)) and

• P pr(v
¯
, t) = v

¯
−DX(t|λ∗)πB(v

¯
)

30Here, (P pu)(−1(·) represents the generalized inverse defined as (P pu)−1(y) ≡ sup{x > 0 : P pu(x) ≥ y}.

A14



• λ∗t = Λ(Kk=1,t=0−).

The definition of regularity changes slightly. Once again it is the restriction is designed to allow for
necessary conditions to be derived from standard analysis of the HJB’s:

Definition 12. A Weak Markov equilibrium in the public game is regular if

1. Jpu is continuous everywhere and C1 at k’s for which the continuation strategy prescribes smooth
trade.

2. At states with smooth trade, P pu is continuous.
3. Jumps in the cutoffs are isolated, and cutoff paths are differentiable in the interior of smooth trade

regions.

For private offers, regularity implies 1-3 above (for Jpr and P pr) with the following modifications:

• Jpr is C1 at (k, t)’s with smooth trade.
• For any on-path state (k, t) of the private game, the seller’s continuation strategy has absorbing

smooth trade: if trade is smooth at (k, t), it is smooth at (k, t′), t′ ≥ t.

As above, I use the shorthand “equilibrium” for “Weak Markov Regular equilibrium.”
I focus on the more interesting case where the public game continues to have non-trivial dynamics:

Assumption 5 (Non-trivial public dynamics). Let k† be as in Assumption 4.1 and kpu := inf{k ≥ v
¯

:

Rpu(k) = P pu(v
¯
)}. Then k† > kpu.

As shown below, the public game with a gap ends instantly at states k < kpu, whereas k† is the
state the public equilibrium jumps to (this is established for the gap case below). Then, intuitively, if
k† < kpu the public game cannot have any gradual trade.

Under this assumption, most of the necessary conditions from the no-gap analysis extend, and most
of the key rankings of payoffs, prices, and trading speeds continue to hold.

Theorem 6. Assume there is a gap, but Assumptions 1-3, 4.1 still hold.

1. Theorem 1 (payoff ranking at on-path smooth trade states) continues to hold for all sufficiently

high k’s, and holds with weak inequalities for all k’s. In particular, if the public game starts with

smooth trade, the seller prefers private (public) bargaining under DEI (DDI).

2. If, in addition, Assumption 5 holds, then

(a) Theorem 2 continues to hold.

(b) There exists T ∗ > 0 and a positive measure of cutoffs that are reached before T ∗ in either

game, for which the results in Theorem 3 and Corollary 1 (1 and 2(c)) continue to hold.

Lemma 13. Consider the smooth trading payoff expressions in Lemma 1. With a gap, the expression

for Jpu remains true; the expression for Jpr remains true for (k, t)’s with smooth trade that are reached

on path.31

Proof. Consider the (necessary) HJB in a private game of interruption (the remaining cases are identical).
In the interior of smooth trade regions,

31 Recall these are the states at which regularity of equilibrium has bite.
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rJprS (k, t) = sup
(|k̇|,γ)∈R2

+

{
(P pr(k, t)− JprS (k, t))

fB(k)

FB(k)
|k̇| + γ (P pr(v

¯
, t)− JprS (k, t))

+ λ∗t [ΠS(k)− JprS (k, t)] +
∂

∂k
JprS (k, t)(−|k̇|) +

∂

∂t
JprS (k, t)

}

= λ∗t [ΠS(k)− JprS (k, t)] +
∂

∂t
JprS (k, t) (40)

where γ is the rate at which the pooling offer is made. The last equality follows from the linearity and
the fact that |k̇| < +∞, γ = 0 must be optimal by hypothesis. Since the equilibrium is regular, the ODE
above holds for all t′ > t. Integrating backward and taking limits (using the fact that Jpr is bounded)
one obtains Jpr(k, t) = Rpr(k, t|λ∗). By identical arguments, Jpu(k) = Rpu(k) at states with smooth
trade.

Next, I show that one can split the state space and apply the necessary conditions from the no-gap
case to high enough states:

Lemma 14. Fix regular equilibria for the public and private games. Let kpu be as in Assumption 5, and

let k̃(t) be the solution of

Rpr(k̃(t), t|λ∗) = DX(t|λ∗)ΠS(k̃(t)) = v
¯
−DX(t|λ∗)πB(v

¯
) = P pr(v

¯
, t) (41)

with P pu(v
¯

), P pr(v
¯
, t) as in Definition 11 and Rpu, Rpr as the smooth trade payoffs from (10).

1. For k > kpu, Jpu(k) > P pu(v
¯

), and making a pooling offer at k is strictly suboptimal for the

seller in the public game. For k < kpu, the game ends immediately with a pooling offer, and

Jpu(k) = P pu(v
¯

).

2. For k > k̃(t), Jpr(k, t) > P pr(v
¯
, t), and making a pooling offer at state (k, t) is strictly

suboptimal for the seller in the private game.

3. max{kpu, k̃(1)} < 1.

Proof. For the first item, if Jpu(k) > P pu(v
¯
), there is nothing to prove, so focus on Jpu(k) = P pu(v

¯
).

One strategy available to the seller at k is to jump the state to k′ ∈ (kpu, k) with Rpu(k′) > P pu(v
¯
);

that such a k′ exists follows from k > kpu. Then

P pu(v
¯
) = Jpu(k) ≥ (1− FB(k′; k))P pu(k′) + FB(k′; k)Jpu(k′).

The seller could achieve Rpu(k′) by stalling indefinitely, so Jpu(k′) ≥ Rpu(k′) > P pu(v
¯
). Hence,

using the last display, P pu(k′) must be strictly smaller than P pu(v
¯
), a contradiction. Next, suppose there

existed some k < kpu for which the game did not end with an immediate pooling offer. By definition,
Jpu(k) ≥ P pu(v

¯
) > Rpu(k) and Rpu(k′) < P pu(v

¯
) for all k′ ≤ k. The latter, however, means that the

continuation game after k cannot have smooth trade or quiet periods with positive probability, since
these would give the seller less than the pooling offer P pu(v

¯
). The game must therefore end immediately

with probability one, a contradiction.
An identical argument establishes the first statement of Point 2, replacing kpu with k̃(t), Rpu(·) with

Rpr(·, ·|λ∗), and P pu(v
¯
) with P pr(v

¯
, t).

The third item follows directly from Assumptions 2 and 3.

Proof of Theorem 6. Lemma 3.1 in the no-gap case (no cutoff jumps in the private offer equilibrium)
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only used the expression for seller payoffs. By Assumption 3, the cutoff in the private game must drop
eventually (stalling at k = 1 forever is not an equilibrium), so under DEI (DDI) λ∗t is strictly above
(below) Λ(1) for some large enough t. This was all that was required for Theorem 1.

By Lemma 14, since max{kpu, k̃(t)} < 1 and kpu < k†, for high enough cutoffs, the no-gap
analysis applies identically: there are no quiet periods in either game for those states, smooth-trade
prices and speeds are as before, and the public game starts with a jump to k† followed by smooth trade.
In particular, in the public game, kpu will be reached at a strictly positive time; together with no jumps
in the private game, this implies the existence of some T ∗ > 0 such that, on path, the pooling offer is
never used in either game until time t = T ∗. Hence, the ranking arguments in Theorem 2, Theorem 3,
and Corollary 1 apply identically for states that are reached before time T ∗.

Construction and Uniqueness for Public Gap Case

Proposition 1. Under Assumptions 1-3, 4.1 and 5

The following is the unique on-path Weak Markov equilibrium outcome of the public game:

1. Prices are given by

P pu(k) =


P̂ pu(k†), k ∈ [k†, 1]

P̂ pu(k), k ∈ [kpu, k†)

P pr(v
¯

) := v
¯
−D(v

¯
)πB(v

¯
), k < kpu

2. Cutoff policies are given by

• For k ∈ (kpu, k†], trade smoothly at speed k̇ = −ϕpu(k), where ϕpu is given by (19), and

make no pooling offers.

• For k ∈ (k†, 1], jump the state to k† immediately.

• For k = kpu, keep the cutoff constant and make the pooling offer at a Poisson rate γ satisfying

kpu − P pu(kpu) =
Λ(k)

γ + r + Λ(kpu)
πB(kpu) +

γ

γ + r + Λ(kpu)
(kpu − P pu(v

¯
)) (42)

• For k < kpu, make the pooling offer immediately.

If kpu ≥ k†, there is a Weak Markov equilibrium with prices

P pu(k) =

P̂ pu(kpu), k ≥ kpu

P pu(v
¯

) = v
¯
−D(v

¯
)πB(v

¯
), k < kpu

and the following cutoff policy:

• For k > kpu, jump the state to kpu immediately.

• At k = kpu, keep the cutoff constant, and make the pooling offer at a Poisson rate given by (42).
• At k < kpu, make the pooling offer immediately.

The seller’s payoffs before the impasse are therefore the same as in the no-gap case.

Proof of Proposition 1, Uniqueness. By Lemma 14, for k > kpu, the seller never uses the pooling offer,
and the game can be analyzed exactly as in the no-gap case. The uniqueness claims for the no-gap case
therefore carry over for those states:P pu(k) = mon P̂ pu(k), k ∈ (kpu, 1] by Lemma 6, which itself
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pins down the cutoff paths for k > kpu. For k < kpu, the unique equilibrium outcome is an immediate
pooling offer (using Lemma 14), while for k = kpu, the seller is indifferent over mixing policies, but
given play for k 6= kpu, the rate in Proposition 1 is pinned down uniquely by the marginal buyer’s
indifference condition.

Existence, Public Gap Case

I give details for kpu < k†, since the remaining case is similar.
Buyer optimality is by construction. In the pooling region, no buyer type can improve on immediate

acceptance, and the mixing rate in (42) is calibrated to make vB = kpu just indifferent at state kpu. For
the remaining types and states, the arguments in the no-gap case carry over identically.

It remains to show seller optimality. First, I rewrite (39) in a convenient form, for the case where H
is absolutely continuous. 32 Let γs := f(s)/1−H(s) denote the hazard rate for such an H at s, with
γ := {γt, t ≥ 0} and Γt :=

∫ t
0
γs. Also, for an arbitrary admissible cutoff policy Q = {Qt, t ≥ 0}, let

L(Q)t :=
∫ t

0
Λ(Qs)ds. Then, using integration by parts, the payoff from (Q, H) is∫ ∞

0

e−rt−L(Q)t−ΓtP pu(Qt)d(1− FB(Qt; k))

+

∫ ∞
0

e−rt−L(Q)t−ΓtFB(Qt) [γtP
pu(v

¯
) + Λ(Qt)ΠS(Qt)] dt (43)

To interpret the expression, consider for example the second integral. Notice that T and σ are independent
conditional on Q, so PQ,γ(σ ∧ T > t) = e−L(Q)te−Γt . Hence, the joint probability that T ∈ [t, t+ dt)

and σ > t+ dt is ≈ γte−Γtdt× e−L(Q)t , which is the factor multiplying FB(Qt)P (v
¯
).

Proposition 2. Let (Q∗, H∗) be an admissible policy for problem (39), and let ψ : [v
¯
, 1] → R be its

implied value function. If

1. ψ is continuous, has a continuous derivative on [v
¯
, k
¯

) and (k
¯
, 1], with a possible kink at k

¯
;

2. (OPT-J) For all k ∈ [v
¯
, 1],

ψ(k) ≥ (1− FB(k′; k))P pu(k′) + FB(k′; k)ψ(k′) ∀k′ ≤ k.

3. (OPT-S) For almost every k ∈ [v
¯
, k
¯

) and almost every k ∈ (k
¯
, 1],

u

[
fB(k)

FB(k)
(P pu(k)− ψ(k))− ψ′(k)

]
+ w [P pu(v

¯
)− ψ(k)]

− (r + Λ(k))ψ(k) + Λ(k)ΠS(k) ≤ 0 ∀(u,w) ∈ R2
+,

then (Q∗, H∗) solves (39).

Proof. Suppose ψ satisfies items 1 to 3. Start with k ∈ [k
¯
, 1], and take an arbitrary admissible policy

(Q, H) for (39) such that H is absolutely continuous with hazard rate path γ. Standard change-of-value
formulas then yield

32 The formulation will suffice for checking seller optimality even if H is not absolutely continuous, since the payoff of such
policies can be approximated by sequences of policies with absolutely continuous H’s in the weak star topology.
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e−rt−L(Q)t−ΓtFB(Qt; k)ψ(Qt)− ψ(k) =∑
s<t

e−rs−L(Q)s−Γs [FB(Qs; k)ψ(Qs)− FB(Qs−; k)ψ(Qs−)]

+

∫ t

0

e−rs−L(Q)s−Γs

[
fB(Qs)

FB(Qs)
ψ(Qs)Q̇s + FB(Qs; k)ψ′(Qs)Q̇s

− (−rs− L(Q)s − Γs)FB(QS ; k)ψ(Qs)

]
dt

≤

−
∫ t

0

e−rs−L(Q)s−ΓsP pu(Qs)d(1− FB(Qs; k)

−
∫ t

0

e−rs−L(Q)s−ΓsFB(Qs) [γsP (v
¯
) + Λ(Qs)ΠS(QS)] ds

Taking limits as t→∞, we find that ψ(k) is greater than the payoff from (Q, H). Since (Q, H) was
arbitrary, (Q∗, H∗) weakly dominates all admissible policies with absolutely continuous H’s; those
policies can approximate any admissible policies arbitrarily closely, so (Q∗, H∗) is optimal in (39)
starting from k ∈ [v

¯
, k

¯
].

Now take k ∈ (k
¯
, 1]. Since cutoffs are always monotonically decreasing, the principle of optimality

implies that one can write objective (43) as follows:

sup
Q∈Ak,γ

∫ τ(Q)

0

e−rt−L(Q)t−ΓtP pu(Qt)d(1− FB(Qt; k))

+

∫ τ(Q)

0

e−rt−L(Q)t−ΓtFB(Qt) [γtP (v
¯
) + Λ(Qt)ΠS(Qt)] dt

+ e−rτ(Q)−L(Q)τ(Q)−Γτ(Q)ψ(Qτ(Q)) (44)

where τ(Q) := inf{t > 0 : Qt ≤ k
¯
} is the first time the cutoff reaches k

¯
. Recreating the previous

steps, assume ψ satisfies (OPT-J) and (OPT-S), and take an arbitrary admissible policy (Q, γ),Q ∈ Ak.
Again, by change-of-value formulas,

e−rt∧τ(Q)−L(Q)t∧τ(Q)−Γt∧τ(Q)FB(Qt∧τ(Q); k)ψ(Qt∧τ(Q))− ψ(k) =∑
s<t∧τ(Q)

e−rs−L(Q)s−Γs [FB(Qs; k)ψ(Qs)− FB(Qs−; k)ψ(Qs−)]

+

∫ t∧τ(Q)

0

e−rs−L(Q)s−Γs

[
fB(Qs)

FB(Qs)
ψ(Qs)Q̇s + FB(Qs; k)ψ′(Qs)Q̇s

− (−rs− L(Q)s − Γs)FB(QS ; k)ψ(Qs)

]
dt

≤

−
∫ t∧τ(Q)

0

e−rs−L(Q)s−ΓsP pu(Qs)d(1− FB(Qs; k))

−
∫ t∧τ(Q)

0

e−rs−L(Q)s−ΓsFB(Qs) [γsP (v
¯
) + Λ(Qs)ΠS(QS)] ds
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Taking t → ∞ on both sides, t ∧ τ(Q) → τ(Q), and starting from k ∈ (k
¯
, 1], (Q∗, H∗) weakly

dominates any (Q, H) with absolutely continuous H . By the arguments above, (Q∗, γ∗) must solve
(39) starting from k ∈ (k

¯
, 1].

I now show that the value seller policy described in Proposition 1 is a best response to P pu and
L = Λ. I explain the case kpu < k̂, as the remaining case is similar. That policy gives payoffs

ψ∗(k) =


L(k, k̂), k ∈ (k̂, 1]

Rpu(k), k ∈ [kpu, k̂]

P pu(v
¯
), k ∈ [v

¯
, kpu).

(45)

ψ∗ is continuous everywhere. It is smooth on [v
¯
, kpu), (kpu, k̂) and (k̂, 1]. It is also C1 at k̂: for k > k̂,

(ψ∗)′(k) =
FB(k̂)

FB(k)2
fB(k)

[
P pu(k̂)−D(k̂)ΠS(k̂)

]
. (46)

By the continuity of fB , the above implies that

(ψ∗)′(k̂+) =
fB(k̂)

FB(k̂)

[
P pu(k̂)−D(k̂)ΠS(k̂)

]
.

On the other hand, from (12), (ψ∗)′(k̂−) = fB(k̂)

FB(k̂)
[P̂ pu(k̂)− ψ∗(k̂)], so (ψ∗)′(k̂−) = (ψ∗)′(k̂+), and

ψ∗ is indeed C1 at k̂.
Next, I verify that ψ∗ satisfies (OPT-J) and (OPT-S). Starting with (OPT-S), for all k, ψ∗(k) ≥

P pu(v
¯
). Hence, for any w ≥ 0, w(ψ∗(k)− P pu(v

¯
)) ≤ 0. Likewise, for any u ≥ 0, and k 6= kpu,

u

[
fB(k)

FB(k)
(P pu(k)− ψ∗(k))− (ψ∗)′(k)

]
− (r + Λ(k))ψ∗(k)

+ Λ(k)ΠS(k)


≤ 0, k ∈ (k̂, 1]

= 0, k ∈ (kpu, k̂]

< 0, k ∈ [v
¯
, kpu)

The weak inequality in the first case follows from Lemma 5 and minor algebra; the equality in the
second case is by construction, since P pu = P̂ pu for k ∈ [kpu, k̂]; the strict inequality follows from
ψ∗(k) = P pu(k) = P pu(v

¯
) > Rpu(k) for k < kpu. Hence, ψ∗ satisfies (OPT-S).

To check (OPT-J), define

U∗(y;x) = (1− FB(y;x))P pu(y) + FB(y;x)ψ∗(y), v
¯
≤ y ≤ x ≤ 1

For y ∈ (kpu, k̂), using ψ∗(y) = Rpu(y), P pu(y) = P̂ pu(y), and it follows that ∂
∂k′U

∗
y (y; k) =

(1− FB(y; k)) (P̂ pu)′(y). Therefore, since P̂ pu is strictly increasing on [kpu, k̂], and U∗(y, x) =

P pu(v
¯
) for y ≤ kpu,

max
v
¯
≤y≤k̂

U∗(y; k) = L(k, k̂). (47)

In particular, (OPT-J) holds for k ≤ k̂.
Using the definition of ψ∗ on (k̂, 1], for k′, k such that k̂ < k′ < k,

U∗(k′; k) = (1− FB(k′; k))P pu(k′)

+ FB(k′; k)
[
(1− FB(k̂; k′))P̂ pu(k̂) + FB(k̂; k′)Rpu(k̂)

]
= (1− FB(k̂; k))P̂ pu(k̂) + FB(k̂; k)Rpu(k̂) = U∗(k̂; k)

(48)
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where the last line uses FB(k′; k)FB(k̂; k′) = FB(k′)FB(k̂)/FB(k)FB(k′) and P pu(k′) = P̂ pu(k̂)

for k′ > k̂. (48) and the previous arguments yield maxv
¯
≤y≤k U

∗(y; k) = ψ∗(k) for all k, so (OPT-J)
holds. By Proposition 2, the seller policy is a best response to P pu.
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A Online Appendix

A.1 Proof of Theorem 2

First, I define RME’s of the hybrid starting-public game.

Definition 13. Consider a triple33

Σ =
(
{Kk0,k,t}k0∈[0,1],k≤k0,t≥0− , {λ∗t [·]}t≥0, P

s.p.(·, ·)[·]
)
,

together with a value function Js.p.S (·, ·)[·].
Let Pt,k0(Q) = {P s.p.(Qs, t+ s)[k0]}s≥0− and L∗t,k0 = {λ∗t+s[k0]}s≥0− denote future the prices

and costly intervention rates that Σ prescribes for time t onwards in response to a cutoff path Q, given
an initial jump to k0 in the public phase. Then Σ is a Markov equilibrium of the starting-public game if

1. Buyer Optimality For all k0 ∈ [0, 1], k ≤ k0, t ≥ 0−, accepting at accepting at τ∗ = inf{s :

P s.p.(Kk0,k,t
t+s , t+ s)[k0] ≤ P s.p.(vB , t+ s)[k0]} solves vB’s continuation problem

sup
τ≥0
UvBB (τ ;Pt,k0(Kk0,k,t),L∗t,k0).

2. Seller Optimality

a. Start of Game For an admissible cutoff path Q, let Q+ = {Qt}t≥0, i.e., Q+ = Q if Q does
not jump at t = 0; otherwise Q+ is the continuation of Q after the initial jump. Then
Kk0=1,k=1,t=0− solves the seller’s initial problem

sup
Q∈A1

(1− FB(Q0))P s.p(Q0, 0)[Q0] + FB(Q0)UQ0

S (Q,P0,1(Q+),L∗0,1),

and delivers value Js.p(1, 0)[1].

b. Private Phase For any k0 ∈ [0, 1], k ∈ [0, k0], and t ≥ 0, Kk0,k,t solves the seller continua-
tion problem

sup
Q∈Ak

FB(k)−1UkS(Q,Pt,k0(Q),L∗t,k0)

and delivers value Js.pS (k, t)[k0].

5. Entrant Optimality, Correct On-Path Private Phase Beliefs
For every s ≥ 0, k0, λ∗s[k0] satisfies

λ∗s[k0] = Λ(Kk0,k=k0,t=0−

s ) = `0G(ΠA(Kk0,k=k0,t=0−

s )), (49)

i.e., the entrants have correct conjectures about the cutoffs that are supposed to follow every initial
offer.

Proof of Theorem 2. Let k� be the initial jump of some public offers RME. Since that jump ends on the
smooth trade locus, the seller’s value at k = 1 under public offers is

33 To avoid duplicate notation, I use the symbol Kk,t,k0 evaluated at different superscripts to denote both the cutoff path at the
start of the game (corresponding to t = 0−) and all cutoff paths from the private phase. Note that the “t = 0” path is distinct
from the t = 0− path: the former refers to the path at the very start of the private offers phase, at which point the seller no longer
directly controls costly intervention rates, while the latter refers to the path at the start of the game, at which point the seller can
control the initial costly intervention rate. Naturally, for t = 0−, k = k0 = 1, while for t = 0, k = k0 (but k0 < 1 is allowed).
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U(1, k�) = (1− FB(k�)) P̂ pu(k�) + FB(k�)D(k�)ΠS(k�).

I derive a lower bound on the seller’s payoff in any RME of the starting-public game and prove that
this bound exceeds U(1, k�). A necessary condition for the initial public offer of that starting-public
game is

K0 ∈ arg max
k0∈[0,1]

{
(1− FB(k0))P s.p.(k0, t = 0)[k0] + FB(k0)DX(t = 0|λ∗[k0])ΠS(k0)

}
.

Indeed, taking as given P s.p.(·, ·)[·] and λ∗[·], the seller could always choose an impulse control for Kt

with a different size of initial jump, and after the initial jump the seller faces a continuation game that
looks like a private game with initial state K0− = k0. In particular, this means that the seller’s payoff in
the starting-public game is at least

(1− FB(k�))P s.p.(k�, t = 0)[k�] + FB(k�)DX(t = 0|λ∗[k�])ΠS(k�)

Consistency of entrant beliefs requires that, for k0 = k�, λ∗0[k�] = Λ(k�). By Theorem 4, DX(t =

0|λ∗[k�]) > D(k�). Adapting the arguments in Theorem 3 to a private game with initial stateK0− = k�,

P s.p.(k�, t = 0)[k�] = DX(t = 0|λ∗[k�])πS(k�) > P̂ pu(k�).

Altogether, comparing term by term,

(1− FB(k�))P s.p.(k�, t = 0)[k�] + FB(k�)DX(t = 0|λ∗[k�])ΠS(k�) > U(1, k�),

which proves the result.

A.2 Construction and for Private Gap Case

The “right” construction, in terms of incentives that would support private on-path play similar to the
public gap case—smooth trade, followed by an impasse of stochastic length, after which the pooling
offer is made—is clear. The possibility of making a profitable pooling offer creates a region in (t, k)

space inside which it is overwhelmingly tempting to make a pooling offer. The boundary of this region
usually cannot be crossed on path, since prices would drop discontinuously and deterministically. Hence,
in equilibrium th (e cutoff path must “reflect” off the boundary, which is achieved by the seller mixing
between a “normal” offer and a discontinuously generous pooling offer, in such a way that the marginal
type remains indifferent between accepting and rejecting and the cutoff path skirts that pooling region.
Eventually, normal trade “stops,” with the seller mixing between holding firm and making the pooling
offer.

A full existence proof, however, raises some technical issues close to the frontier of the literature
on control. The resulting value function for the seller is kinked in a way that makes standard viscosity
approaches to verification (to my knowledge) inapplicable.34

34 The notion of viscosity solution can be extended Hamiltonians with discontinuous data by considering the upper and lower
continuous envelope of the Hamiltonion and demanding that the value function be a viscosity sub/supersolution of the respective
envelope. That procedure can also be followed here to check that the value is a viscosity solution of the HJB in an appropriate
sense, but what remains is to prove uniqueness of viscosity solutions to the HJB for such a setup—that would “certify” the
optimality of the seller’s policy for all states.

For an example of viscosity solutions with data discontinuous in the state, and the issues this raises, see Akian et al. (2001). To
my knowledge, the control literature has tackled only these problems in parametric examples relevant to mathematical finance, and
under some special assumptions on the nature of the discontinuity (Giga et al., 2011).
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With that caveat in mind, I describe such a construction for the DEI case and the outstanding issues.
To describe the results concisely, I require some auxiliary definitions. Let kpr = sup{k ∈ [v

¯
, 1] :

Rpu(k) = v
¯
−D(k)πB(v

¯
)}. By Assumption 3, kpr ∈ (v

¯
, 1).35 Let z∗ be the unique value for which

the unique forward solution to the dynamical system (33) starting at (k0 = 1, z0 = z∗) exits the domain

D = {(k, z) : k ∈ (0, 1], D(0) < z < D(1)},

through (kpr, D(kpr).36 Let K† and Z† denote that solution, and let tpr denote its (finite) time of exit
from D. Define the rate path λ∗t as follows.

λ∗t =


rZ†t

1−Z†t
, t < tpr

Λ(kpr), t ≥ tpr
(50)

In addition, let the locii k̂(t) and k̃(t) solve, respectively,

λ∗t
λ∗t + r

ΠS(k̂(t)) = v
¯
−DX(t|λ∗)πB(v

¯
) (51)

DX(t|λ∗)ΠS(k̃(t)) = v
¯
−DX(t|λ∗)πB(v

¯
)

and let t̂(k) := (k̂)−1(t) for t ≤ tpr denote the inverse of k̂(t). Note that the locii k̂, k̃ are constant for
t ≥ tpr, and are strictly decreasing (increasing) in (t, k) space for t < tpr if DEI (DDI) holds.

Below I use the notation

Upr(k′; k, t)(1− FB(k′; k))P pr(k, t) + FB(k′; k)Jpr(k′, t), k′ ≤ k

to denote the seller’s payoffs from jumping the state from k to k′ ≤ k, given continuation payoffs of
Jpr(k, t). I will use repeatedly use the following fact:

Fact ? If P pr and Jpr are partially differentiable in k at (k′, t), and P pr(k′, t) =

Jpr(k′, t) + FB(k′)
fB(k′) J

pr
k (k′, t), then Uprk′ (k′; k, t) = (1− FB(k′; k))P prk (k′, t).

Theorem 7 (DEI Construction). Consider the 4-tuple of
((
Kk,t

)
k∈[0,1],t≥0−

, P pr(k, t), (λ∗t )t≥0, H
)

,

where costly intervention rates are given by (50), the law of motion for cutoffs and pooling offers at state

(k, t) is given by

1. If k < k̃(t), immediately make the pooling offer.

2. If k > k̃(t), make no pooling offers, and trade smoothly according to

k̇ = −

[
(λ∗t + r)(k − P pr(k, t)) + ∂

∂tP
pr(k, t)− λ∗tπB(k)

∂
∂kP

pr(k, t)

]
.

3. If t ≥ tpr, k = k̃(t), hold the cutoff constant forever while making the pooling offer at a Poisson

rate γ given by

kpr − P pr(kpr, tpr) =
λ∗tprπB(kpr)

γ + r + λ∗tpr
+
γ(kpr − P pr(v

¯
, tpr))

γ + r + λ∗tpr
(52)

35 In the DDI case, the equation D(k)ΠS(k) = v
¯
−D(k)πB(v

¯
) has a unique solution, so the supremum is redundant. There

may be multiple solutions in the DEI case, so it is possible that kpr 6= kpu where the latter is as in Proposition 1. Even so, the
payoff comparisons from the no-gap case will continue to hold, since they only apply for states (k, t) on the private offers path of
play.

36 Existence and uniqueness of such z∗ and the associated forward solution to (33) follow from Lemma 10.
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4. If k = k̃(t), t < tpr, trade smoothly at the rate K̇t = k̃′(t), and make the pooling offer at a

Poisson rate γt satisfying

(r + λ∗t + γt)(k − P pr(k, t)) = λ∗tπB(k) + γt(k − P pr(v¯
, t))

− P prk (k, t)k̃′(t)− P prt (k, t). (53)

and prices P pr are given by

P pr(v
¯
, t) := v

¯
−DX(t|λ∗)πB(v

¯
). (54)

P pr(k, t) =

P pr(v¯ , t), k < k̃(t).

DX(t|λ∗)πS(k), k ≥ k̃(t).
(55)

These strategies are

• Audience-optimal.

• Buyer-optimal.

• Satisfy the consistent-beliefs condition.

• Are sequentially optimal starting for the seller at (k, t) /∈ [kpr, 1]× [0, tpr].

• Induce a seller value function Jpr that satisfies a rate-impulse-control quasi-variational inequality

outside the k̃(t) locus. LetM andR denote the operators

Ru,γϕ(k, t) = [P pr(k, t)− ϕ(k, t)]
fB(k)

FB(k)
u+

∂

∂k
ϕ(k, t)(−u)

+ λ∗t [ΠS(k)− ϕ(k, t)] + γ[P pr(v
¯
, t)− ϕ(k, t)]

+
∂

∂t
ϕ(k, t)− rϕ(k, t)

and

Mϕ(k, t) = max
k′≤k
{ (1− FB(k′; k))P pr(k, t) + FB(k′; k)ϕ(k′, t)} (56)

that act on C1 functions ϕ : [0, 1]× R+ → R. Then Jpr satisfies

0 = max

{
sup

|k̇|≥0,γ≥0

{
R|k̇|,γJpr(k, t)−rJpr(k, t)

}
, MJpr(k, t)− Jpr(k, t)

}
(57)

in a classical sense for all (k, t) such that k 6= k̃(t).

• For (k, t) such that k = k̃(t), Jpr is continuous but not C1.

The construction has the “right” incentives—with the seller preserving the buyer’s incentive con-
straints mixing between a regular offer and a pooling offer/reflecting off a boundary—but falls partly
short of a full equilibrium proof.

The behavior in the Theorem (i) induces a value function function for the seller that is not C1, (ii)
the discontinuities in the partial derivatives are on a locus that the seller can cross from above and from
below, (iii) that non-differentiable locus is not on vertical or horizontal lines in (t, k) space, but is strictly
decreasing, and (iv) the cutoff path prescribed for the seller spends positive time on that non-C1 locus.
Because of point (i) the vanilla verification theorem for seller optimality that I used in the no-gap case
will not work. Because of point (ii), the approach I take in the gap public game, splitting the state space

B4



into regions that are accessed in a fixed order, also will not work. Because of points (iii) and (iv), the
problem requires a viscosity approach, but even then “standard” viscosity approaches do not readily
apply since the data in the HJB is discontinuous in the state (since the price P pr(k, t) is) and the HJB
contains a non-local operator.

Proof. I introduce some notation for the different regions of the state space:

• A1 = {(k, t) : k > k̃(t), t < tpr}.
• A2 = {(k, t) : k > k̃(t), t ≥ tpr}.
• B = {(k, t) : k ∈ (kpr, k̃(t)), t ≤ tpr}
• C = {(k, t) : k ≤ kpr}.

Audience optimality and consistent beliefs follow by construction of (50). To check buyer optimality for
(k, t) ∈ int{B ∪ C}, notice that v = v

¯
is by construction indifferent between accepting and rejecting

P pr(v
¯
, t), at each t. Given the expectation of an immediate offer of P pr(v

¯
, t), all types will therefore

have weak incentives to accept immediate. The Poisson rate γ in (52) makes kpr indifferent between
accepting P pr(kpr) and waiting for the pooling offer, while, by the same arguments made in no-gap
smooth trading, the Poisson rates γt and speed of trade k̃′(t) in (53) make k = k̃(t) just indifferent
between accepting and rejecting. Finally, the marginal type is, by construction, indifferent between
accepting and not at all points in A1 ∪ A2. (The smooth trade speeds can be shown to be positive by
Assumption 3). Altogether, by the skimming property, and using the buyer optimality arguments from
the no-gap case with minimal modification, buyer optimality holds here, too.

Seller optimality within C One has Jpr(k, t) = P pr(v̄, t), so Jpr(k, t) = MJpr(k, t) follows
trivially. Plugging in Jpr(k, t) = P pr(v

¯
, t) = P pr(k, t) = v

¯
−DX(t|λ∗)πB(v

¯
), one has, by simple

calculus,

Ru,γJpr(k, t) = λ∗t [ΠS(k)− P pr(v
¯
, t)] +

∂

∂t
P pr(v

¯
, t)− rP pr(v

¯
, t) (58)

= (λ∗t + r)

[
λ∗t

λ∗t + r
(ΠS(k) + πB(v

¯
))− v̄

]
(59)

≤ (λ∗t + r)
[
DX(t|λ∗)(ΠS(k) + πB(v

¯
))− v

¯

]
≤ 0

where the inequality follows from k ≤ kpr ≤ k̃(t). Hence Jpr(k, t) solves (65) classically for
C \ {(k, t) : k ∈ [kpr}. The seller’s policy is therefore optimal in C by verification arguments that are
nearly identical to those in Proposition 2, and are therefore omitted.

Seller optimality within B By identical arguments to the those for region C, Jpr(k, t) = P pr(v
¯
, t)

solves (65) classically in B.

Seller optimality within A2 The seller’s payoffs are Jpr(k, t) = DX(t|λ∗)ΠS(k), using the same
arguments as before. Since k > k̃(t), Jpr(k, t) > P pr(v

¯
, t). This, together with Jpr(k′, t) = P pr(v

¯
, t)

for t ≥ tpr, k′ ≤ kpr, yields Jpr(k, t) ≥ Upr(k′; k, t) for (k, t) ∈ A2,, k′ ≤ kpr. Moreover, P pr(k, t)
is strictly increasing in k within A2 and satisfies P pr(k, t) = Jpr(k, t) + FB(k)

fB(k) J
pr
t (k, t), so using the

key fact at the beginning of the proof, Jpr(k, t) = supk′∈(kpr,k] U
pr(k′; k, t) (Jpr(k, t). Altogether,

Jpr(k, t) =MJpr(k, t); this fact, together with P pr(k, t) = Jpr(k, t) + FB(k)
fB(k) J

pr
t (k, t), implies that

Jpr(k, t) solves (65) classically in A2.
Finally, starting from A2, the seller can only enter C. Given the optimality results for region C,
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verification arguments from Proposition 2 (with minor modifications that again omitted) once again
imply that the seller’s policy is optimal in A2 ∪ C.

Seller optimality within A1 By identical arguments to the those for region A2, Jpr(k, t) = DX(t|λ∗)

and Jpr(k, t) ≥ P pr(v
¯
, t) ≥ Upr(k′; k, t) k′ ≤ k̃(t). Since P pr(k′, t) is strictly increasing in k′ for

(k′, t) ∈ A1, Fact ? above implies that Jpr(k, t) = maxk′∈(k̃(t),k] U
pr(k′, k, t). Altogether, Jpr(k, t) =

MJpr(k, t), which given the smooth-trade expression for Jpr implies that Jpr satisfies (65) classically
in A1.

Off-Path Stopped Clock Offers This construction is standard as in discrete time (see Chaves and
Varas (2022) for a continuous time version). At points of discontinuity of P pr, by construction the seller
is indifferent between the endpoints. Hence it suffices to consider a two point lottery between the high
and the low offer, with probabilities that make the marginal type indifferent.

A.3 DDI Case (Sketch)

The DDI has the additional wrinkle that the boundary of the state space at which the pooling offer
becomes tempting for the seller will typically be increasing. This means that, even if the seller refuses to
trade, that region will still be entered at a positive speed. To preserve incentives for the buyer, prices in
those regions that must be entered at positive speed must move continuously, i.e., must match the pooling
offer at that boundary. Following that train of thinking, the natural equilibrium to construct would be one
in which there is smooth trade with an eventual impasse on path (as in the DEI case), and the problematic
part of the pooling region is approached smoothly off path. This seems to require an enlargement of the
seller’s strategy space: there are off path regions where, if one follows the construction strategy above,
reservation prices are discontinous, and the seller must mix between prices while holding the cutoff

constant. Hence, off path, behavior is not Markov in (k, t) but must also depend on the lowest price
charged. For completeness, I provide a heuristic description of the off path play that still captures the
right incentives.

Heuristically, we can think of the seller as being able to drive jumps in the price using a controlled
Markov process, as in Online Appendix A.4.

The buyer again chooses a reservation price strategy, now given by a function κ(p, t) that gives the
lowest type to accept a price p at time t. the seller’s objective is

sup
P∈ADDIp

Et
[∫ σ

t

e−r(s−t)Psd(1− FB(κ(Ps, t+ s); k))

+ e−r(σ−t)FB(κ(Pσ−t, σ); k)ΠS(κ(Pσ−t, σ))

]
(60)

For states where P pr is strictly continuous in k, the game can be analyzed in quantity space just as
before. The new formulation allows the seller to stochastically jump the price without jumping the
cutoff at points where P pr is discontinuous, which cannot be formalized in quantity space and will be
necessary to preserve incentives off path.

Consider the price path P , reservation strategy κ and costly intervention rates λ∗t such that

• rates are given by (50).
• κ(p, t) = (P pr)−1;k(p, t) where (P pr)−1;k is the generalized inverse with respect to the first

argument, and
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P pr(v
¯
, t) = v

¯
−DX(t|λ∗)πB(v

¯
). (61)

P pr(k, t) =



P pr(v
¯
, t), k < k̂(t).

DX(t|λ∗)πS(k), k > kpr.∫ t̂(k)

t

λ∗se
−

∫ s
t

(r+λ∗ν)dνdsπS(k)

+ e−
∫ t̂(k)
t

(r+λ∗s)dsP pr(v
¯
, t̂(k))

, (k, t) ∈ [k̂(t), kpr)× [0, tpr]

(62)

• For (p, t) /∈ {(p′, t′) : P pr(kpr+, t′) = p′, t′ < tpr}, Pt = P pr(Kt, t), where Kt moves according
to

1. If Kt ≤ k̂(t), immediately make the pooling offer, i.e. drop k to v
¯

and charge P pr(v
¯
, t).

2. If Kt > kpr or Kt ∈ (k̂(t), kpr), t < tpr, make no pooling offers, and trade smoothly
according to

K̇t = −

[
(λ∗t + r)(Kt − P pr(Kt, t)) + ∂

∂tP
pr(Kt, t)− λ∗tπB(Kt)

∂
∂kP

pr(Kt, t)

]
.

3. If t ≥ tpr, Kt = kpr, hold the cutoff constant forever while making the pooling offer P pr(v
¯
, t)

at a Poisson rate γ given by

P pr(kpr, tpr) =

(
1− γ

γ + r

)
D(kpr)πB(kpr) +

γ

γ + r
P pr(v

¯
, tpr)

• If p = P pr(kpr+, t) for t < tpr, keep the deterministic part of the price path constant until tpr,
while jumping the price down to P pr(kpr−, t) at a Poisson rate ηt given by

(r + λ∗t + ηt)(k
pr − P pr(kpr+, t)) = λ∗tπB(kpr)

+ ηt(k
pr − P pr(kpr−, t))− P prt (kpr+, t) (63)

These strategies are

• Audience-optimal.
• Buyer-optimal.
• Satisfy the consistent-beliefs condition.
• Are sequentially optimal for the seller starting at states (k, t) with k < k̂(t)

• Outside of k = kpr, t < tpr and (k, t) = (k̂(t), t) the strategies induce an equivalent quantity space
seller value function Jpr that satisfies a rate-impulse-control quasi-variational inequality outside the
k̃(t) and k̂(t). LetM andR denote the operators

Mϕ(k, t) = max
k′≤k
{ (1− FB(k′; k))P pr(k, t) + FB(k′; k)ϕ(k′, t)} (64)

and

Ru,γϕ(k, t) = [P pr(k, t)− ϕ(k, t)]
fB(k)

FB(k)
u+

∂

∂k
ϕ(k, t)(−u)

+ λ∗t [ΠS(k)− ϕ(k, t)] + γ[Mϕ(k, t)− ϕ(k, t)]

+
∂

∂t
ϕ(k, t)− rϕ(k, t)

that act on C1 functions ϕ : [0, 1]× R+ → R. Then Jpr satisfies
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0 = max


sup

|k̇|≥0,γ≥0

{
R|k̇|,γJpr(k, t)−rJpr(k, t)

}
,

MJpr(k, t)− Jpr(k, t)

 (65)

• For (k, t) such that k ∈ {kpr, k̂(t)}, Jpr is continuous but not C1.

Proof. I introduce some notation for the different regions of the (k, t) state space:

• A1 = {(k, t) : k > kpr, t ≥ tpr}.
• A2 = {(k, t) : k > kpr, t < tpr}.
• B = {(k, t) : k = kpr, t ≤ tpr}.
• C = {(k, t) : k ∈ (k̂(t), kpr), t ≤ tpr}
• D = {(k, t) : k ≤ k̂(t)}.

For all regions outside B, verification can proceed in quantity space, similar to the DEI case.
Audience optimality and consistent beliefs follow by construction of (50). Buyer optimality in D

follows as before. By the usual smooth-screening arguments, the speed of trade k̇ and prices P pr in
C, given buyer optimality in D, makes the marginal type indifferent within C. For region B, given
continuation play within C ∪D, the mixing rate (63) makes vB = kpr just indifferent between accepting
P pr(kpr+, t) and waiting for P pr(kpr−, t) at state (kpr, t): integrating equation (63) backwards from
tpr,

kpr − P pr(kpr+, t) =

∫ tpr

t

λ∗se
−

∫ s
t

(r++ην+λ∗ν)dνdsπB(kpr)

+

∫ tpr

t

ηse
−

∫ s
t

(r++ην+λ∗ν)dν (kpr − P pr(kpr−, s)) ds

+ e−
∫ tpr
t

(r++ηs+λ
∗
s)ds(kpr − P pr(kpr, tpr)),

and P pr(kpr+, t) is exactly kpr’s reservation price at (kpr, t) Buyer optimality then follows by identical
arguments to the DEI case and the skimming property (the smooth trade speeds are positive using
Assumption 3).

Seller optimality within D Plugging in Jpr(k, t) = P pr(v̄, t) = v
¯
−DX(t|λ∗)πB(v

¯
), one has, by

simple calculus,

Ru,γJpr(k, t) = λ∗t [ΠS(k)− P pr(v
¯
, t)] +

∂

∂t
P pr(v

¯
, t)− rP pr(v

¯
, t) (66)

= λ∗tΠS(k)λ∗tπB(v
¯
)− (λ∗t + r)πB(v

¯
) ≤ 0

where I have used P pr(k, t) = P pr(v
¯
, t) and k ≤ k̂(t). Hence Jpr(k, t) solves (65) classically in D.

The remaining arguments are identical to the DEI case, and omitted.

Seller optimality within C Consider the function

N(k, t) =

∫ t̂(k)

t

λ∗se
−

∫ s
t

(r+λ∗ν)dνdsΠS(k) + e−
∫ t̂(k)
t

(r+λ∗s)dsP pr(v
¯
, t̂(k)). (67)

These are the payoffs to the seller from stalling at (k, t) until reaching the locus (k, t̂(k)). Partially
differentiating yields
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rN(k, t) = λ∗t (ΠS(k)−N(k, t)) +Nt(k, t)

P pr(k, t) = N(k, t) +
FB(k)

fB(k)
Nk(k, t)

. (68)

where the second line uses

∂

∂t̂(k)
N(k, t) = e−

∫ t̂(k)
t

(r+λ∗ν)dνds
[
λ∗
t̂(k)

ΠS(k)− (r + λ∗
t̂(k)

)P pr(v
¯
, t̂(k))

+ P prt (v
¯
, t̂(k))

]
= 0 (69)

Therefore the seller is indifferent between trading at the required smooth speed and stalling until t = t̂(k).
By the arguments in the no-gap case, the seller’s payoffs at (k, t) are then given by Jpr(k, t) = N(k, t).
Using (69) one has that Nk(k, t) > 0, so

N(k, t) > N(k̂(t), t) = P pr(v
¯
, t). (70)

By direct differentiation, P prk (k, t) > 0 in D, so using (68) and Fact ?, Uprk′ (k′; k, t) > 0 for all
k′ ≥ k̂(t) and Jpr(k, t) = maxk′∈(k̂(t),k] U

pr(k′; k, t). For k ≤ k̂(t), Upr(k′; k, t) = P pr(v
¯
, t), so

using (70), it follows that Jpr(k, t) = MJpr(k, t). Combining this last equality with (70) and (68),
Ru,γJpr(k, t) = 0, and Jpr solves (65) classically inside this region.

The seller policy is sequentially optimal in D, and starting in C the cutoff can only enter D,
spending zero time on the boundary. Once again verification arguments from Proposition 2, with minor
modifications that are omitted, imply that the seller’s policy is optimal in C ∪D.

Seller optimality for B The seller can only enter C or D from B. First, I show that the seller
is willing to mix and enter C as required. By familiar arguments, given a price P pr(kpr+, t) =

DX(t|λ∗)πS(kpr), the payoffs from a quiet period in B (leaving the price at P pr(kpr+), t) with
probability 1) equal Jpr(kpr+, t) = DX(t|λ∗)ΠS(kpr). Meanwhile, taking limits of the payoffs
in C as k ↗ kpr, one obtains Jpr(kpr−, t) = DX(t|λ∗)ΠS(kpr−) = Jpr(kpr+, t). In particular,
MJpr(kpr+, t) = Jpr(k+, t).

Seller optimality within A2 This is identical to the DEI case, and thus omitted.

Seller optimality within A1 By identical arguments to the those for region A2 in the DEI case,
Jpr(k, t) = DX(t|λ∗) and Jpr(k, t) ≥ Upr(k′; k, t) for k′ ∈ [0, k̂(t)] ∪ {kpr}. Since P pr(k′, t) = for
k′ ∈ (k̂(t), kpr), Fact ? above implies that maxk′∈(k̂(t),kpr) U

pr(k′, k, t) = Jpr(kpr−, t). Altogether,
Jpr(k, t) =MJpr(k, t), which given the smooth-trade expression for Jpr, implies that Jpr satisfies
(65) classically in A1.

Off-path stopped clock offers As in the DEI case, using two-point distributions.

A.4 General P̂ pu: Removing Assumption 4.1

I show how to extend the equilibrium construction to arbitrary P̂ pu’s. I impose only the condition that
P̂ pu has finitely many local maxima.

The construction requires richer jumping behavior, which can be formalized in a space larger than
that in Definition 10.

Definition 14 (Strategy Space NP). To allow the seller to mix over cutoff paths, enlarge the probability
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space to include a controlled Poisson process Xt with intensity γt. Say a cutoff path t 7→ Kt is
admissible if it is non-increasing and can be written as

Kt = K0− +

∫ t

0

K̇udu+

∫ t

0

∆Ks
u−dXu +

∑
u≤t

∆Kd
u−

where (K̇t,∆K
s
t ,∆K

d
t , γt) are FXt -predictable processes, with FXt denoting the filtration generated

by (Xt)t≥0 ANPk denotes the admissible paths with initial value K0− = k.

In words, the seller can jump the cutoff both deterministically (represented by ∆d
u−’s) and stochas-

tically (represented by ∆s
u−’s), with the stochastic jumps given by the ticks of the Poisson process

controlled by the seller. The seller’s payoff for a realization of a cutoff path Q is given by

Π(Q) = EQ
k

[∫ σ

0

e−rtP pu(Qt)d(1− FB(Qt; k)) + e−rσFB(Qσ; k)ΠS(Qσ)

]
where the expectation is over the time of costly intervention σ induced by Q. and the seller’s strategy
solves supQ∈ANPk

E[Π(Q)]. The buyer payoffs and full definition of a Weak Markov equilibrium are
essentially as in the previous section, with minimal notational changes left to the reader.

To present the construction succinctly, I develop some necessary notation. Let η(k) := inf{k′ >
k : L(k′, k) = R(k′)} ( with η(1) := 1 if L(k′, k) > R(k′) for all k′ > k). Let Nε(x) denote an ε > 0

ball around x. Then S(k) := inf{k′ > k : ∃ε > 0 s.t. P̂ pu(k′) ≥ P̂ pu(k)∀k ∈ Nε(k′)}. In words,
S(k) is the nearest local maximum of P̂ pu to the right of k.

The equilibrium reservation price curve, denoted P̆ , is constructed from P̂ pu and Rpu recursively as
follows:

1. P̆ (v
¯
) = P̂ pu(v

¯
).

2. If P̆ (k) = P̂ pu(k), (P̂ pu)′(k) > 0,

P̆ (k′) = P̂ pu(k′)∀k′ ∈ [k,S(k)].

3. If P̆ (k) = P̂ pu(k), (P̂ pu)′(k) ≤ 0, η(k) < 1,

P̆ (k′) =

P̆ (k), ∀k′ ∈ [k, η(k))

P̂ pu(η(k)), k′ = η(k), η(k) < 1

4. If P̆ (k) = P̂ pu(k), (P̂ pu)′(k) ≤ 0, η(k) = 1,

P̆ (k′) = P̆ (k), ∀k′ ∈ [k, 1].

In particular, P̆ can be discontinuous at η(k) if (P̂ pu)′(k) ≤ 0, and when P̆ is strictly increasing, it
must match P̂ pu.

Proposition 3. With the seller strategy space in Definition 14, there exists an equilibrium with the

following on-path outcome:

1. P pu = P̆ ,L = Λ.

2. At any k with P̆ (k) > P̆ (k−), there is a quiet period with Poisson duration of rate γ(k), where

δ(k) := γ(k)/(γ(k) + r) solves

k − P̆ (k) = (1− δ(k))D(k)πB(k) + δ(k)
(
k − P̆ (k−)

)
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When the quiet period ends, the state jumps down to

ξ(k) := inf{k′ < k : P̆ (k′) = P̆ (k−)}

The seller’s payoff at such a k is Rpu(k).

3. If P̆ (k) is constant immediately to the left of k, the state jumps down to ξ(k), and the seller’s

payoff equals L(k, ξ(k)).

4. If P̆ is strictly increasing and continuous at k, trade happens smoothly at a speed

max{0,−ϕpu(k)}, and the seller’s payoff equals Rpu(k).

The verification for the seller follows almost identical steps to Proposition 2, and for the buyer it
follows Theorem 5, so I omit them. Meanwhile, private offer payoffs equal Jpriv(k, t) = DX(t|λ∗)

regardless of the shape of P̂ pu, so the payoff characterization behind Theorems 1 and 2 hold in this very
general environment.

Remark 5. If P̂ pu is in this general case, but there is a gap, then a similar construction of P̆ holds,
replacing step 1 in the construction with

• P̆ (k) = v
¯
−D(v

¯
)πB(v

¯
), k ∈ [v

¯
, kpu).

• P̆ (kpu) = P̂ pu(kpu).
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